18.10.2016 ABSTRACT: Porous graphitic carbon is essential for manyapplications such as energy storage devices, catalysts, and
sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore
structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular
framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous
structures, while promoting graphitization during carbonization and chemical activation. The above unique design results
in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g−1), large pore
volume (2.26 cm−3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times
more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by
supercapacitors and lithium−sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a
broad range of graphitic carbons with desired structures and compositions for many applications.
|