04.05.2006
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 04.05.2006   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


04.05.2006

Nature 441, 69-72 (4 May 2006) | doi:10.1038/nature04699; Received 6 September 2005; Accepted 2 March 2006


Towards molecular electronics with large-area molecular junctions


Hylke B. Akkerman1, Paul W. M. Blom1, Dago M. de Leeuw2 and Bert de Boer1



Electronic transport through single molecules has been studied extensively by academic1, 2, 3, 4, 5, 6, 7, 8 and industrial9, 10 research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes11, 12, break junctions13, 14, metallic crossbars6 and nanopores8, 15. For technological applications, molecular tunnel junctions must be reliable, stable and reproducible. The conductance per molecule, however, typically varies by many orders of magnitude5. Self-assembled monolayers (SAMs) may offer a promising route to the fabrication of reliable devices, and charge transport through SAMs of alkanethiols within nanopores is well understood, with non-resonant tunnelling dominating the transport mechanism8. Unfortunately, electrical shorts in SAMs are often formed upon vapour deposition of the top electrode16, 17, 18, which limits the diameter of the nanopore diodes to about 45 nm. Here we demonstrate a method to manufacture molecular junctions with diameters up to 100 microm with high yields (> 95 per cent). The junctions show excellent stability and reproducibility, and the conductance per unit area is similar to that obtained for benchmark nanopore diodes. Our technique involves processing the molecular junctions in the holes of a lithographically patterned photoresist, and then inserting a conducting polymer interlayer between the SAM and the metal top electrode. This simple approach is potentially low-cost and could pave the way for practical molecular electronics.






  1. Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG, Groningen, The Netherlands
  2. Philips Research Laboratories, High Tech Campus 4, NL-5656 AA, Eindhoven, The Netherlands


Correspondence to: Bert de Boer1 Correspondence and requests for materials should be addressed to B.d.B. (Email: b.de.boer@rug.nl).



Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я © 2004-2025 ИХТТ УрО РАН
беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок