05.07.2012
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 05.07.2012   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


05.07.2012


Optical nano-imaging of gate-tunable graphene plasmons





Journal name:

Nature

Volume:

487,

Pages:

77–81

Date published:

(05 July 2012)

DOI:

doi:10.1038/nature11254


Received


Accepted


Published online







The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising…





Figures at a glance


left


  1. Figure 1: Imaging propagating and localized graphene plasmons by scattering-type SNOM.
    Imaging propagating and localized graphene plasmons by scattering-type SNOM.

    a, Diagram of the experimental configuration used to launch and detect propagating surface waves in graphene (represented as blue rings). The metallized AFM tip (shown in yellow) is illuminated by an infrared laser beam with wavelength λ0. b, Near-field amplitude image acquired for a tapered graphene ribbon on top of 6H-SiC. The imaging wavelength is λ0 = 9.7μm. The tapered ribbon is 12μm long and up to 1μm wide. c, Colour-scale image of the calculated local density of optical states (LDOS) at a distance of 60nm from the graphene surface, and assuming substrate εr = 1. Simulation fitting parameters: graphene mobility μ = 1,000cm2V−1s−1 and Fermi energy EF = 0.4eV.




  2. Figure 2: Controlling the plasmon wavelength over a wide range.
    Controlling the plasmon wavelength over a wide range.

    a, b, Coloured plots show near-field optical images taken with imaging wavelengths (λ0) of 9,200nm (left), 9,681nm (middle) and 10,152nm (right), corresponding respectively to SiC dielectric constants of 2.9, 2.0 and 0.7. a, Images of a graphene ribbon ~1μm wide, revealing a strong dependence of the fringe spacing, and thus plasmon wavelength, on the excitation wavelength; b, images of a tapered graphene ribbon; both ribbons are on the same 6H-SiC substrate. The topography (obtained by AFM) is shown in greyscale in the leftmost and rightmost panels, and outlined by dashed lines in the central, coloured panels. The line traces in the leftmost and rightmost panels are extracted from the near-field images for λ0 = 9,200nm and λ0 = 10,152nm. Red and white arrows indicate the resonant localized modes.




  3. Figure 3: Comparison of theoretical model with experimental results.
    Comparison of theoretical model with experimental results.

    a, Experimentally extracted plasmon wavelength λp as a function of incident wavelength λ0. Values for λp are obtained from interference fringes (blue crosses) and localized modes (red cross), compared to the calculated plasmon dispersion (blue curves, see Supplementary Information) for graphene assuming intrinsic doping of 0.2 and 0.4eV on a SiC-6H substrate. Green dashed line, SiC substrate permittivity. b, Experimentally obtained resonance conditions W/λp extracted from localized-mode measurements. Red crosses and black circles correspond to the modes indicated by red and white arrows in Fig. 2, respectively. c, Spatial distribution of the LDOS calculated for homogeneous ribbons of increasing width (from bottom to top), supported on a dielectric with εr = 3 (left) or εr = 0.5 (right). The ribbon width of the two lowest-order modes is shown in units of the plasmon wavelength of extended graphene, λp.




  4. Figure 4: Plasmonic switching and active control of the plasmon wavelength by electrical gating.


ftp://mail.ihim.uran.ru/localfiles/nature11254.pdf







Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev   honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2024 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок