Carlos Ramíreza and Chumin Wang, a,
Available online 15 October 2010.
Abstract
Superconductivity could be seen as a Bose–Einstein condensation (BEC) of Cooper pairs. However, the creation and annihilation operators of Cooper pairs do not satisfy the bosonic commutation relations and then, the mentioned viewpoint has a weakness in its foundation. In this work, we introduce the concept of collective Cooper pairs (CCP) as linear combinations of Cooper pairs and prove their bosonic nature at the dilute limit. This bosonic nature is given rise from their diffuse character on the Cooper pairs, which permits the accumulation of many collective pairs at a single quantum state. Moreover, the superconducting ground state proposed by Bardeen, Cooper and Schrieffer (BCS) can be written in terms of these collective Cooper pairs, which means that the BCS theory is consistent with a possible BEC theory of superconductivity based on collective Cooper pairs. Finally, we calculate the energy spectra and the BEC critical temperature of CCP.