Magnetic and non-magnetic phases of a quantum spin liquid
- Journal name:
- Nature
- Volume:
- 471,
- Pages:
- 612–616
- Date published:
- (31 March 2011)
- DOI:
- doi:10.1038/nature09910
- Received
- Accepted
- Published online
A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S = 1/2 spins1. Recently, materials have become available showing persuasive experimental evidence for such a state2. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment3. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators4. The layered molecular system κ-(BEDT-TTF)2Cu2(CN)3 is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers5 that provides a prime example of a spin liquid formed in this way6, 7, 8, 9, 10, 11. Despite a high-temperature exchange coupling, J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7, 8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose–Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.
ftp://mail.ihim.uran.ru/localfiles/nature09910.pdf
- Лаборатория оксидных систем
- Лаборатория нестехиометрических соединений
- Лаборатория гетерогенных процессов
- Лаборатория неорганического синтеза
- Лаборатория химии соединений редкоземельных элементов
- Лаборатория структурного и фазового анализа
- Лаборатория физико-химических методов анализа
- Лаборатория квантовой химии и спектроскопии им. профессора А.Л. Ивановского
- Лаборатория физико-химии дисперсных систем
- Лаборатория перспективных функциональных материалов для химических источников тока
- Лаборатория ионики твёрдого тела
- Группа патентно-конъюнктурных исследований