05.08.2010
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 05.08.2010   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


05.08.2010

Quantum entanglement between an optical photon and a solid-state spin qubit





Journal name:

Nature

Volume:

466,

Pages:

730–734

Date published:

(05 August 2010)

DOI:

doi:10.1038/nature09256


Received


Accepted







Quantum entanglement is among the most fascinating aspects of quantum theory1. Entangled optical photons are now widely used for fundamental tests of quantum mechanics2 and applications such as quantum cryptography1. Several recent experiments demonstrated entanglement of optical photons with trapped ions3, atoms4, 5 and atomic ensembles6, 7, 8, which are then used to connect remote long-term memory nodes in distributed quantum networks9, 10, 11. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique5, 12, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks13, 14.






Figures at a glance


left


  1. Figure 1: Scheme for spin-photon entanglement.


    a, Following selective excitation to the |A2right fence state, the Λ-type three level system decays to two different spin states through the emission of orthogonally polarized photons, resulting in spin–photon entanglement. b, Schematic of the optical set-up. Individual NV centres are isolated and addressed optically using a microscope objective. Two resonant lasers at 637nm and an off-resonant laser at 532nm address various optical transitions. Fluorescence emitted from the NV centre passes through a quarter-wave plate (QWP) and is spectrally separated into PSB and ZPL channels, and detected with avalanche photodiodes (APDs). The latter channel contains entangled photons and is sent using a beam splitter (BS) through a polarization analysis stage consisting of a half-wave plate (HWP) and a polarizing beam splitter (PBS). See text for details.




  2. Figure 2: Characterization of NV centres.


    a, Energy levels of the NV centre under strain. Solid lines are based on a theoretical model23 and dots are data from seven NV centres. The dashed line indicates the NV centre used in this paper. b, Excitation spectrum of the NV centre under continuous wave (c.w.) microwave radiation. c, Polarization properties of the |±1right fence right arrow |A2right fence transition in absorption. The system is initially prepared in |+1right fence (blue) or |−1right fence (red). We then apply a laser pulse of varying polarization to the |A2right fence state while collecting fluorescence. Oscillations with visibility 77±10% indicate that the transitions linking |±1right fence to |A2right fence are circularly polarized and mutually orthogonal (see Supplementary Information for details).




  3. Figure 3: Experimental procedure for entanglement generation.


    a, After spin polarization into |0right fence, population is transferred to |+1right fence by a microwave π-pulse (Ω+1). The NV is excited to |A2right fence with a 637.19-nm π-pulse and the ZPL emission is collected. b, If a σ+ or σ photon is detected, the population in |+1right fence or |−1right fence is transferred to |0right fence. If an |Hright fence or |Vright fence photon is detected, a τ–2πτ echo sequence (see Supplementary Information) is applied with Ω+1 and Ω−1, followed by a π-pulse which transfers the population in |Mright fence (see text) to |0right fence. c, The population in |0right fence is measured using the 637.20-nm optical readout transition. d, Pulse sequence for the case where an |Hright fence or |Vright fence ZPL photon is detected (time axis not to scale). If a σ± photon is detected instead, only a π-pulse on either Ω+1 or Ω−1 is used for spin readout. Inset, detection time of ZPL channel photons, showing reflection from diamond surface and subsequent NV emission (blue) and background counts (purple).




  4. Figure 4: Measurement of spin-photon correlations in two bases.


    a, Conditional probability of measuring |±1right fence after the detection of a σ+ or σ− photon. b, Conditional probability of measuring |±right fence after the detection of an H or V photon, extracted from a fit to data shown in c and d. c, d, Measured conditional probability of finding the electronic spin in the state |Mright fence after detection of a V (c) or H (d) photon at time td. Blue shaded region is the 68% confidence interval for the fit (solid line) to the time-binned data (Supplementary Information). Errors bars on data points show ±1s.d. Combined with the data shown in a, oscillations with amplitude outside of the yellow regions result in fidelities greater than 0.5. The visibility of the measured oscillations are 0.59±0.18 (c) and 0.60±0.11 (d).






right







 







  1. These authors contributed equally to this work.



    • E. Togan &

    • Y. Chu







Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev   honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2024 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок