Abstract
In this study, we demonstrate the photogating effects of p-type HgTe nanoparticles (NPs) on an n-type ZnO nanowire (NW). The photogating effects are due to the charge separation of the charge carriers photogenerated in the NPs under illumination and the subsequent accumulation of the photogenerated electrons in the pn junction of the NPs and the NW. The presence of the electrons in the junction reduces the current in the ZnO NW. The photogating effects are proved by the different photocurrent behavior of the ZnO NW to which the HgTe NPs are attached from that of a bare ZnO NW. In addition, the dependence of the photogating effects on the power of the incident light is discussed.
Keywords: Nanocrystalline materials; Optical materials; Compound semiconductors; Electro-optical effects