28.02.2008
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 28.02.2008   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


28.02.2008

Nature 451, 1085-1089 (28 February 2008) | doi:10.1038/nature06598; Received 18 October 2007; Accepted 11 December 2007



Designing metallic glass matrix composites with high toughness and tensile ductility


Douglas C. Hofmann1, Jin-Yoo Suh1, Aaron Wiest1, Gang Duan1, Mary-Laura Lind1, Marios D. Demetriou1 & William L. Johnson1




  1. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125, USA


Correspondence to: Douglas C. Hofmann1 Correspondence and requests for materials should be addressed to D.C.H. (Email: dch@caltech.edu).





The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service1. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest2, 3, 4, 5, 6. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries7. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG–matrix composites have been introduced8, 9. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approx1 GPa, tensile ductility of approx2–3 per cent9, and an enhanced mode I fracture toughness of K 1C approximately 40 MPa m1/2 were reported8, 9. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium–zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2–1.5 GPa, K 1C up to approx170 MPa m1/2, and fracture energies for crack propagation as high as G 1C approximately 340 kJ m-2. The K 1C and G 1C values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.



Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я © 2004-2024 ИХТТ УрО РАН
беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок