08.10.2005
РОССИЙСКАЯ АКАДЕМИЯ НАУК

УРАЛЬСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ ХИМИИ TBEPДОГО ТЕЛА
   
| | | | |
| | | | | |
 08.10.2005   Карта сайта     Language По-русски По-английски
Новые материалы
Экология
Электротехника и обработка материалов
Медицина
Статистика публикаций


08.10.2005

Нанотехнологии в автомобильной промышленности

By: Свидиненко Юрий (Svidinenko) 2005.10.07






Нанотехнологии в автомобильной промышленности


 


Сегодня нанотехнологии внедряют несколько крупнейших производителей, но к 2010 году их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.


Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий. 


Одним из наиболее перспективных и многообещающих направлений применения (в том числе коммерческого) достижений современной нанотехнологии является область наноматериалов и электронных устройств. 


Уже существуют легко очищающиеся и водоотталкивающие покрытия для материалов, основанные на использовании диоксида кремния. 


В форме наночастиц это вещество приобретает новые свойства, в частности, высокую поверхностную энергию, что и позволяет частицам SiO2 при высыхании коллоидного раствора прочно присоединяться к различным поверхностям, в первую очередь к родственному им по составу стеклу, образуя, тем самым, сплошной слой наноразмерных выступов. 


Покрытие из наночастиц кремнезема делает обработанную поверхность гидрофобный - на поверхности с плёнкой из SiO2 капля воды касается субстрата лишь немногими точками, что во много раз уменьшает Ван-дер-ваальсовые силы и позволяет силам поверхностного натяжения жидкости сжать каплю в шарик, который легко скатывается по наклоненному стеклу, унося с собой накопившуюся грязь.


В силу наноразмерной толщины, такие покрытия совершенно невидимы, а благодаря биоинертности кремнезема - безвредны для человека и окружающей среды. Они устойчивы к ультрафиолету и выдерживают температуры до 400 °C, а действие водоотталкивающего эффекта длится в течение 4 месяцев.


Несколько зарубежных фирм уже выпускают подобные покрытия в промышленных масштабах. На российском рынке их продукцию представляет эксклюзивный дистрибутор - компания Nanotechnology News Network. 


Что касается в прямом понимании самоочищающихся поверхностей, то такая технология основана на использовании диоксида титана. Принцип действия материала с таким покрытием заключается в следующем.


При попадании ультрафиолетового излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция. В ходе этой реакции испускаются отрицательно заряженные частицы - электроны, а на их месте остаются положительно заряженные дырки. Благодаря появлению комбинации плюсов и минусов на поверхности, покрытой катализатором, содержащиеся в воздухе молекулы воды превращаются в сильные окислители - радикалы гидроокиси (HO), которые в свою очередь окисляют и расщепляют грязь, а также нейтрализуют различные запахи и убивают микроорганизмы.


Кроме покрытий для стекол также разработаны и выпускаются составы с аналогичным действием для тканей, металла, пластика, керамики - и все они имеют потенциал для применения в автомобильной промышленности. 


Из серийных моделей автомобилей гидрофобное покрытие наносится на боковые стекла Nissan Terrano II. Оно не создает полноценный водоотталкивающий эффект, но уменьшает пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло остается вполне прозрачным.


По некоторым сообщениям концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков. 


Компания Mercedes-Benz с конца 2003 года выпускает модели А, С, E, S, CL, SL, SLK покрытых новым поколением прозрачных лаков, изготовленных с использованием нанотехнологии. В состав верхнего слоя такого лакокрасочного покрытия вводят наноскопические керамические частицы. По утверждению создателей, новое лакокрасочное покрытие защищает кузов от царапин в три раза эффективнее, чем обычный лак.



По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем покрашенные обычной краской. 


Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.


В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта. Так российский концерн "Наноиндустрия" наладил серийное производство ремонтно-восстановительного состава "Нанотехнология". Состав предназначен для обработки механических деталей, испытывающих трение - двигали, трансмиссия. 


При применении состав позволяет создавать модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей, что дает возможность избирательной компенсации износа мест трения и контакта деталей за счет образования в этих местах нового модифицированного поверхностного слоя. Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.


В аэрокосмической промышленности уже широко применяется семейство наноструктурированных аэрогелей. Так кремниевый аэрогель - лучший в мире твердый теплоизолятор, когда-либо обнаруженный или полученный. Для промышленности он представляет интерес, так как обладает высокой термической изоляцией - до 800° С (2,5-сантиметровый лист из силиконового аэрогеля надежно защищает руку человека от огня паяльной лампы) и акустической изоляцией - скорость звука при прохождении через аэрогель составляет лишь 100 м/сек. Развитие нанотехнологии позволит снизить себестоимость производства аэрогелей и сделает этот вид материалов доступным для применения в различных отраслях промышленности, в том числе автомобильной. 


Большие перспективы имеются в улучшении электронных компонентов автомобиля с помощью нанотехнологий. Так МикроЭлектроМеханические системы (MEMS) уже расширяют стандартную технологию микроэлектроники, позволяет объединять в одной микросхеме элементы, обеспечивающие как механическое перемещение физических частей, так и электронов в электрической схеме. 


Это позволяет вместо раздельного производства микроактуаторов и сенсоров, делать их в виде интегрированного в микросхему единого изделия. При этом для их производства используется уже апробированная традиционная технология производства интегральных микросхем и полупроводников.


 


Фотография кристалла двухосевого MEMS-акселерометра компании Analog Devices


Идею подвижного кремния (еще так называют MEMS) прекрасно иллюстрируют MEMS-акселерометры, которые уже широко используются в качестве сенсоров автомобильных подушек безопасности. 


Вращающиеся акселерометры также используются для расширения возможностей антиблокировочных систем автомобиля (ABS). Кроме того, в автомобилях MEMS находят применение в датчиках продольных и поперечных ускорений, датчиках крена и т.д. Определяя положение кузова, они служат источником информации для работы различных электронных систем стабилизации и контроля курсовой устойчивости. Также MEMS представляют интерес для создания датчиков давления, температуры. В дорогих автомобилях количество датчиков и сенсоров на основе MEMS-технологии может составлять до нескольких десятков штук.
Кроме измерения ускорений и детектирования перемещений, MEMS используется в системах GPS-навигации. 


История развития MEMS насчитывает более сорока лет, но широкое практическое распространение эти системы получили только с середины 90-ых годов прошлого века. В настоящее время уже идет речь о развитии NEMS - NanoElectroMechanical Systems. В результате эволюции MEMS происходит уменьшение до нано размеров механических компонентов систем, снижается их масса, при этом увеличивается их резонансная частота и уменьшается константы взаимодействия, что сказывается на значительном повышении функциональности данного рода устройств. Точность измерения перемещения у лучших образцов таких устройств составляет 10 нанометров.


Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении. 


Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей. 


Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.


Электронные системы все более тесно интегрируются в конструкцию автомобиля. Существует тенденция дальнейшего расширения использования электроники в автомобилях с одновременным усовершенствованием самой полупроводниковой техники и появлении наноэлектроники и молекулярной электроники.


Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми: 



  • Повышенное быстродействие; 
  • термо - и радиационная стойкость; 
  • миниатюрность; 

  • низкое энергопотребление и как следствие - незначительное тепловыделение при работе.


Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах. 


С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.


Характеристики сорбции водорода углеродными наноматериалами

















































Материал Максимальная емкость, масс. % Температура, K Давление водорода, МПа
Одностенные углеродные нанотрубки  8,25 80 7.18
5 - 10 133 0.04
4,2 300 10-12
3,5 77-300 5-10
6,5 - 7 300 0.1

Графитовое нановолокно
11 - 66 300 11
10 - 12 373 11
Графитовое нановолокно + K  14 473-673 0.1
Графитовое нановолокно + Li  20 473-673 0.1


Так согласно требованиям Международного энергетического агентства системы хранения должны содержать не менее 5 масс. % водорода и выделять его при температуре не выше 373 К. 


Работы по использованию УНТ для хранения водорода поводят и сами автопроизводители. Так Toyota начала разработку технологии производства легкие и компактные баков для хранения водородного топлива, используя УНТ. 


Нанотрубки перспективны для усовершенствования конструкции самих топливных элементов. В процессе роста УНТ и УНВ (углеродных нановолокон) образуются случайным образом ориентированные спиралевидные нанотрубки, что приводит к образованию значительного количества полостей и пустот нанометрового размера. В результате удельная поверхность материала нанотрубок достигает значений около 600 м2/г. Столь высокая удельная поверхность открывает возможность их использования прежде всего в фильтрах и подложках катализаторов топливных элементов.


Китайские и американские ученые совместно разработали нанолампочку, в которой нитью накаливания служит не вольфрамовая проволочка, а углеродные нанотрубки. Лампочка с УНТ более экономичная - при равном напряжении она испускает больше света. 


Сейчас конструкторы "гибридных" автомобилей уже сталкиваются с потребностью в компактных, легких и высокоемких аккумуляторных батареях. Стоит напомнить, что ставшие традиционными кислотные аккумуляторы не годятся, в силу большой массы, громоздкости, экологической "небезупречности". С ростом парка гибридов, а также с массовым появлением водородных автомобилей на ТЭ потребность в автономных источниках хранения электрической энергии возрастет еще больше. Нанотехнологии предлагают ряд решений данной проблемы. 


В силу того, что большинство автомобилей будущего будет работать на электрической тяге, гораздо больший интерес станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%. 


Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.


Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям. 


Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация. 


Сами же автомобили станут: 




  • доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью; в автомобилях будущего основной составляющей цены будет являться "брэнд");



  • комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон); 



  • эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);



  • интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя); 



  • безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).


2005, Nanotechnology News Network


Дизайн и программирование N-Studio 
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
  • Chen Wev   honorary member of ISSC science council

  • Harton Vladislav Vadim  honorary member of ISSC science council

  • Lichtenstain Alexandr Iosif  honorary member of ISSC science council

  • Novikov Dimirtii Leonid  honorary member of ISSC science council

  • Yakushev Mikhail Vasilii  honorary member of ISSC science council

  • © 2004-2024 ИХТТ УрО РАН
    беременность, мода, красота, здоровье, диеты, женский журнал, здоровье детей, здоровье ребенка, красота и здоровье, жизнь и здоровье, секреты красоты, воспитание ребенка рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок медицина, клиники и больницы, болезни, врач, лечение, доктор, наркология, спид, вич, алкоголизм православные знакомства, православный сайт творчeства, православные рассказы, плохие мысли, православные психологи рождение ребенка,пол ребенка,воспитание ребенка,ребенок дошкольного возраста, дети дошкольного возраста,грудной ребенок,обучение ребенка,родить ребенка,загадки для детей,здоровье ребенка,зачатие ребенка,второй ребенок,определение пола ребенка,будущий ребенок