Actuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation in situ. Here, we demonstrate a novel type of high-temperature, low-voltage electromechanical oxide actuator based on the model material PrxCe1−xO2−δ (PCO). Chemical strain and interfacial stress resulted from electrochemically pumping oxygen into or out of PCO films, leading to measurable film volume changes due to chemical expansion. At 650 °C, nanometre-scale displacement and strain of >0.1% were achieved with electrical bias values <0.1 V, low compared to piezoelectrically driven actuators, with strain amplified fivefold by stress-induced structural deflection. This operando measurement of films ‘breathing’ at second-scale temporal resolution also enabled detailed identification of the controlling kinetics of this response, and can be extended to other electrochemomechanically coupled oxide films at extreme temperatures.