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Abstract

The last decade has brought a number of new results related to the thermodynamic fundamentals of surface science.

Increasing the generality and rigor of known methods and obtaining new relationships make necessary supplementing

the previous review of the author [A.I. Rusanov, Surf. Sci. Rep. 23 (1996) 173–247] to provide a fresh insight into the

modern higher-level state of surface thermodynamics. A deeper understanding of such basic notions of surface

thermodynamics as dividing surface, excess surface stress (surface tension), transversal surface tension, line tension,

and mechanical equilibrium is reviewed for curved interfaces. At the same time, the development of the local

thermodynamics (including surface layers with a real surface stress) is exhibited with the gateway to mechan-

ochemistry, which is practically a department of surface science for solids. The chemical approach to the thermo-

dynamicsofnanoparticles isdescribedand illustratedbyexamples.Polymorphous transformations innanoparticlesare

characterized. New relationships for thin wetting films (on the surface, in slits and pores) are given, and various cases of

non-uniform (in thickness) films are analyzed. The modern theory of an equation of state of an adsorbed monolayer is

formulated, and the survey of old and new equations of state is given within the hierarchy of approximations.
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1. Introduction

The previous review by the author devoted to surface thermodynamics [1] was published a time ago

long enough to need updating. Remarkably, the last decade has brought a number of new results related to

the thermodynamic fundamentals of surface science, and this is the main reason for writing a new review

paper. We will try to avoid duplication and concentrate on new achievements. The report will proceed

along three lines. The first one is the reformulation of some known basic concepts of surface

thermodynamics in the light of new results. This concerns, first of all, the dividing surface and surface

tension, the most important concepts of Gibbs’ surface thermodynamics, as well as the mechanical

equilibrium condition at an interface. We earlier [1] cited Gibbs’ saying ‘‘One of the principal objects of

theoretical research in any department of knowledge is to find the point of view from which the subject

appears in its greatest simplicity’’ [2]. Such a point of view seems to be found for the formulation of the

mechanical equilibrium condition (including the generalization of the Laplace equation) in a vector form.

Surprisingly, transition to a maximum possible generality and rigor is here accompanied by a great

simplification. Defining the surface tension tensor as an excess quantity, the excess normal component of

the stress tensor is called the transversal surface tension. The third dimension aspect of surface tension is

discussed, and the role of transversal surface tension is illustrated by examples.

The second line of consideration is supplementing the topics presented earlier [1] with new results.

This concerns wetting phenomena, the line tension, and the Shuttleworth–Herring relation dealing with

two different surface tensions (mechanical and thermodynamic) for solid surfaces. As was shown by the

author earlier [1], the difference of the two surface tensions is related to the behavior of the chemical

potential of a solid in its surface layer. However, the situation with chemical potential seems to need

better understanding. In spite of that the tensorial nature of chemical potential in solids was convincingly

exhibited many times in the literature (and also in Ref. [1]), the concept of the chemical potential

anisotropy seems to become choky for many solid state scientists. It is typical that, artistically operating

with the stress and strain tensors, they deal with the chemical potential in a solid as with that related to a

fluid. The situation forces the author to represent a new detailed and transparent derivation of the known

expression for the chemical potential tensor as a direct consequence of the thermodynamic definition of

chemical potential.
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The line tension plays a significant role in wetting phenomena. Up to the present time, the information

about the line tension has become such numerous and diversified that a systematization is needed in this

field. The line tension classification includes two- and three-dimensional systems with rigid or

deformable solids. Similarly to surfaces, a distinction is also made between the excess line stress

(mechanical line tension) and the excess line free energy (thermodynamic line tension). The latter is used

in the generalized Young equation for the three-phase contact line, which is the most important practical

case. Using Gibbs method of dividing surfaces, the condition of equilibrium of a sessile drop on a flat

non-deformable solid substrate is investigated. The dependence of the line tension on the curvature radius

of the dividing three-phase contact line is found and other useful formulas for the line tension and its

derivatives are reviewed.

The third line of the review is characterizing the topics and areas of surface science not described or

only barely touched upon earlier [1]. This includes mechanochemistry, nanoparticles, and thin films and

monolayers on a solid surface. As in all above cases, the description is provided on the basis of newly

obtained results. Since every solid typically participates in chemical reactions with it surface, the solid

state mechanochemistry actually is a department of surface science. In mechanochemistry, not an excess

surface stress introduced in surface thermodynamics, but a real surface stress is important as directly

influencing the solid chemical potential and the affinity and, as a consequence, the rate of a chemical

reaction. This requires the development of local thermodynamics of anisotropic solid states presented in

Section 2. The distinctive of this description is, first, the use of the volume displacement tensor (together

with or replacing the strain tensor) and, second, the use of the Cauchy stress tensor that is a real stress

tensor in contrast with the Piola tensor (related to the hypothetical initial unstrained state) used, e.g. by

Landau and Lifschitz. This approach simplifies understanding the mechanical term in fundamental

thermodynamic equations. Affinity, a certain combination of chemical potentials, is known to be a

driving force for all processes occurring with matter (diffusion, phase transitions, chemical reactions,

etc.). The affinity tensor can be easily incorporated in the fundamental equations for solids, and this

makes the thermodynamic basement for mechanochemistry.

The description concerns not only bulk masses, but also small pieces of matter. The thermodynamics

of curved interfaces, and, in particular, the dependence of surface energy on the particle size, is of

especial importance for nanoparticles. It was experimentally discovered for a long time ago that phase

transitions could occur in nanoparticles in the course of their preparation by disintegrating a solid. In spite

of a small size of particles, this phenomenon was usually described in the language of the Clapeyron–

Clausius equation for macroscopic phases, and rigorous equations for nanoparticles presented in the

review were derived only recently. Being of an intermediate position between single atoms and

macroscopic phases, nanoparticles are completely described when both their internal and external

energies are taken into account. For this reason, the phase approach, accounting only for internal energy

and neglecting external energy, seems to be insufficient for nanoparticles. As an alternative to the phase

approach, a quasi-chemical approach to thermodynamic description of solid nanoparticles is formulated

when nanoparticles are regarded as supramolecules, their set of same nature and increasing size as

homologous series, nanoparticles of same composition but different structure as isomers, etc.

Thin wetting films can be located both on the solid surface and inside the pores or/and slits in a solid.

The main characteristic of a thin film is that its both surface layers are incompletely developed (say,

because of not enough space in a slit). As a result, conditions for equilibrium for thin films do not coincide

with those for interfaces. In particular, an additional thermodynamic property, the disjoining pressure,

appears in relationships for thin films, defined as a difference between the normal pressure in a film and
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the pressure in the mother bulk phase having the same values of chemical potentials as in the film. The

equilibrium conditions for thin films, non-uniform in thickness, on solids are reviewed, and the disjoining

pressure definition for non-uniform films is discussed.

A monolayer is a particular case of a thin film that lowers the surface free energy and the positive

surface stress of solids. The problem of an equation of state for an adsorbed or spread surface monolayer

is reviewed in the final section. A novel approach to the theory of an equation of state is described based

on the notion of excluded area. Surveying the hierarchy of approximations, many old and famous (the

Planck, van der Waals, Frumkin, and of the scaled particle theory) equations, as well as recent and precise

two-dimensional equations of state, are presented in a systematic manner and verified by comparison

with the modern data on computer simulation with hard disks by the methods of molecular dynamics and

Monte Carlo. The attempts to formulate an orientation equation of state and the relation between

molecular orientation in monolayers and two-dimensional phase transitions are reviewed. When

formulating the novel approach to the theory of equation of state, we again meet the strong requirement

of simplicity (this principle is often called ‘‘Ockham’s razor’’), so that the above Gibbs’ saying could

serve as an epigraph to this paper.

Surface science develops not uniformly in all its departments. So, if we try to touch upon all

achievements of surface thermodynamics, this makes the review to some extent fragmentary by

necessity. It is of hope, however, that, taken together with the previous review by the author [1], this

paper presents the state of the art of surface thermodynamics in good coverage. Since the historical

background of surface thermodynamics as a whole was given in Ref. [1], we do not repeat it here and

practically give no references in the introduction. However, when considering new areas of surface

thermodynamics, a necessary historical sketch will be given separately in corresponding sections with all

references. Before we proceed to surface thermodynamics, it is natural to survey modern local

relationships for anisotropic (solid) states that can be equally applied to bulk phases and surface layers.

2. Local thermodynamics of solids

The mechanical part of the local thermodynamics of solids is formulated in the theory of elasticity [3]

quite independently of the chemical part including chemical potentials. This is attained by assuming the

amount of matter to be constant in all processes, so that the chemical term in fundamental equations

disappears automatically. Furthermore, the mechanical part is formulated in such a form (using the Piola

stress tensor) that makes it scarcely suitable for serving as a template in formulating the chemical part. To

overcome this difficulty, we first have to reformulate the mechanical part of the local thermodynamics of

solids. The second step will be the formulation of the chemical part in a similar way. Eventually, we will

unite both the parts in fundamental equations making the thermodynamic basement of mechanochem-

istry [4,5].

2.1. Mechanically anisotropic states in a solid

The anisotropy of a body element can be caused by the nature of the body itself or by external actions

transforming the element to an anisotropic state. Mechanically anisotropic states are especially typical

for solids where such states easily arise under the action of external forces. If the stress vector En is

applied to the unit area of an arbitrary cross-section passing through a given point of a solid and having
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unit normal n, the set of En as a function of n completely characterizes the local mechanical state. The

physics of the stressed state is such that, for finding this function, it is enough to know three stress vectors

Es (s = 1–3) on the surfaces perpendicular to the three basic directions. The set of the three vectors yields

the stress tensor Ê in the diadic form (the second order tensor)

Ê�
X3

s¼1

isEs (2.1)

where the diadic (tensorial) product of the basic unit vector is and the corresponding stress vector Es

stands under the symbol of summation (we set the basic unit vector on the left and shall below carry out

the multiplication by vector from the left, bearing in mind that operators can also been taken in the vector

form). The vectors Es have components Est (t = 1–3; the subscript sequence is here more conventional

and different from that used in Ref. [3]). The stress tensor given by the table of Est (s, t = 1–3) is always

(even under non-equilibrium conditions) symmetrical (i.e. Est = Ets) by physical conditions (the second

law of motion by Cauchy [6]). Therefore, the number of components diminishes down to six in the

general case. Furthermore, as for any symmetrical tensor, the number of the components of the stress

tensor can be reduced to the three principal values Ek (k = 1–3) by the corresponding choice of an

orthogonal coordinate system (with the axes along the principal directions), so that one can write

Ê ¼
E11 E12 E13

E21 E22 E23

E31 E32 E33

0
B@

1
CA ¼

E1 0 0

0 E2 0

0 0 E3

0
B@

1
CA: (2.2)

Irrespective of the stress tensor form (diagonal or non-diagonal), the stress tensor always contains

diagonal components which are normal stresses. If, however, the stress tensor is taken in the diagonal

form, tangential stresses disappear and only normal stresses are maintained, which can be created, for

example, by the contact of a solid with a liquid of a given pressure (pressure always acts as a normal

force). Therefore, if we imaginary select an elementary rectangular parallelepiped with its faces

perpendicular to the principal directions, the mechanical state at this place may be identified with

the state of the parallelepiped when it contacts (with its different faces) three different liquids of pressures

p1 = �E1, p2 = �E2, and p3 = �E3 (Fig. 1). The stress En on the unit surface of arbitrary orientation n, is
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found from the condition (a dot symbolizes a scalar product; the scalar product of a tensor and a vector is

a vector)

En ¼ n � Ê: (2.3)

Putting (2.1) in (2.3), we obtain

En ¼
X3

s¼1

ðn � isÞEs: (2.4)

Every stress is a force which is capable to do a work if the elementary surface to which the force is

applied, is able to moving. Let a displacement of a unit elementary surface of orientation n be given by

vector un (that can be not collinear with the stress vector En at the same surface). Then the elementary

displacement work is En�dun. Applying this expression to the element of the surface of an equilibrium

body with the outer normal n and integrating over the whole closed surface A of the body, we evidently

obtain the elementary work of deformation of the body (if the process is quasi-static, this work yields the

change in free energy F under the condition of the constancy of the mole numbers Ni of all components):

ðdFÞNi
¼ « ðEn � dunÞdA (2.5)

We choose, as a body, an elementary rectangular parallelepiped with its faces perpendicular to the

Cartesian coordinate axes xs (s = 1–3), with its edges of lengths Ls (s = 1–3) along the corresponding

axes, and with its volume V = L1L2L3. For such a body, Eq. (2.5) takes the form

ðdFÞNi
¼
X3

s¼1

AsEs � dus ¼
X3

s¼1

Es � dVs ¼ V
X3

s¼1

Es � des; (2.6)

where As is the area of the face perpendicular to the direction s, Vs and es are, respectively, the volume

displacement vector (of the volume dimension) and the strain vector (dimensionless) at the s-face,

defined through the linear displacement vector as

Vs ¼ Asus (2.7)

es ¼
us

Ls
(2.8)

The terns of these vectors at the elementary surfaces perpendicular to the basis directions, form the

volume displacement tensor

V̂�
X3

s¼1

isVs ¼
V11 V12 V13

V21 V22 V23

V31 V32 V33

0
B@

1
CA (2.9)

and the strain tensor

ê�
X3

s¼1

ises ¼
e11 e12 e13

e21 e22 e23

e31 e32 e33

0
B@

1
CA: (2.10)
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For small displacements, the diagonal components of tensor V̂ yield the absolute volume changes and the

diagonal components of tensor ê yield the relative changes of volume or of linear dimensions along

corresponding axes (non-diagonal components describe the deformation of beveling the right angle). The

tensor trace (symbol Tr), i.e. the sum of the diagonal components, is known to be an invariant

(independent of the coordinate system) and gives the absolute, in the case of V̂, or the relative, in

the case of ê, change of the volume of the whole body:

Tr V̂� 1̂ : V̂ ¼
X3

s¼1

Vss ¼ DV ; (2.11)

Tr ê� 1̂ : ê ¼
X3

s¼1

ess ¼
DV

V
; (2.12)

where two dots denote a biscalar product (as in the (single) scalar product of vectors, this is the sum of the

pair products of corresponding components of tensors under multiplication).

Using tensorial symbolism (appropriate for any coordinate system), we now can write Eq. (2.6) in two

equivalent forms

ðdFÞNi
¼ Ê : dV̂�

X3

s;t¼1

EstdVst (2.13)

ðdFÞNi
¼ VðÊ : dêÞ�V

X3

s;t¼1

Estdest (2.14)

From (2.13) and (2.14), the important relations follow

Est ¼
@F

@Vst
¼ @F

V@est
ðs; t ¼ 1�3Þ (2.15)

The reader has noticed that we use full free energy in all relationships and do not use the free energy

density, as it is generally accepted at the formulation of the thermodynamics of deformation in continuum

mechanics. Not referring to the unit volume initial state, we also use the real stress tensor (the Cauchy

tensor) that is applicable to every actual anisotropic state (see Ref. [4] for comparing the above equations

in terms of Cauchy and Piola tensors).

We considered above the relationships for small uniform regions of a mechanically anisotropic

system. However, the system as a whole can be nonuniform and characterized by a given stress tensor

field in whose formation also external fields (gravity, an electrical field, etc.) can take part. In such a

system, the obvious condition of mechanical equilibrium is the equality to zero for the total force acting

on any fragment selected of the system. This force is composed of the contact force given in (2.3), after its

integration over the closed surface A of the system fragment selected, and the force F of an external field:I
ðÊ � nÞdAþ F ¼ 0: (2.16)

By dividing (2.16) by the volume V of the fragment selected and letting V ! 0 (then, by definition, the

first term yields the divergence of the Ê tensor), we pass to the local formulation of the mechanical
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equilibrium condition

r � Ê ¼ �f (2.17)

where the divergence of the stress tensor is represented as the scalar product of the nabla-operator and the

stress tensor, and f � F/V is the external field force per unit volume. Depending on the stress tensor

definition, this force can be also included into the stress tensor as its component (for example, as the

Maxwell stress tensor to speak about an electromagnetic field). This reduces Eq. (2.17) to the form

similar to that in the absence of fields

r � Ê ¼ 0: (2.18)

The advantage of Eq. (2.18) is its simplicity, although the stress tensor itself acquires a more complicated

structure.To conclude this section, we touch the relation between the stress and strain tensors. This

already refers to the problem of a solid state equation, which is often used as the Hook law. However, we

postulate no equation of state, but only introduce the components llmst of the elasticity modulus tensor l̂
(a tensor of the fourth order)

llmst ¼
dElm

dest
(2.19)

not assuming the constancy of these quantities. Since each of the tensors Ê and ê contains six different

components, the number of components in the six-dimensional tensor l̂ is 36, but, accounting for that,

similarly to Ê and ê, l̂ is a symmetrical tensor, the maximum number of modules in one tensor is reduced

to 21. As for the total number of modules, it should be estimated from the number of possible derivatives

of the form (2.19). The matter is that the derivative in (2.19) is taken not only at the natural constancy of

the temperature and the mass of a body, but also at additional conditions imposed on the tensors Ê and ê
and influencing the meaning of a modulus defined. For example, one can define the modulus of stretching

l1111 with the following variations (the exclusive disjunction � is of the meaning ‘‘either, or’’)

l1111 ¼ dE11

de11

� �
e22�E22;e33�E33;e12�E12;e13�E13;e23�E23

(2.20)

where always, as in every other modulus, five quantities are fixed in addition to temperature and mass. If

all the five are strains, l1111 is the one-dimensional stretching modulus. If, however, all the five are

stresses, l1111 is Young’s modulus (other combinations still have no their terminology). Each of the five

conditions in (2.20) yields two variants, and they all together form 25 = 32 variants for every of the 21

modules. Thus, the theoretically maximum total number of elasticity modules of an anisotropic solid is

672 (the reduction of this number for real crystals is larger, the higher is the crystal symmetry).

Having the relation between the components of the stress and strain tensors, we can choose the

variables in thermodynamic equations at discretion. The components of the strain tensors play the role of

independent variables in Eq. (2.14). Choosing now the stress tensor components as independent

variables, we may write

dest ¼
X3

l;m¼1

@est
@Elm

dElm ¼
X3

l;m¼1

dElm

llmst
(2.21)
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where llmst is defined by (2.19) at the constancy of all components of the stress tensor Est, except Elm.

Putting (2.21) in (2.14) yields the expression for the partial differential of free energy in terms of the

stress tensor components:

ðdFÞNi
¼ V

X3

l;m¼1

X3

s;t¼1

Est

llmst
dElm (2.22)

From (2.22), the important relationship follows

@F

@Elm
¼ V

X3

s;t¼1

Est

llmst
(2.23)

The above relationships will be helpful at the formulation of the chemical terms in fundamental equations

for anisotropic bodies.

2.2. Chemical potential tensor

It is possible to show that the anisotropy of the stress tensor in a solid leads to the anisotropy of

chemical potential, which supplies the chemical potential with a tensorial character. This fundamental

statement slowly penetrates into theory (e.g. it has not yet been used in mechanochemistry), so it is

worthy to consider it in more detail.

2.2.1. Historical background

Although chemical potential is one of the central quantities of Gibbsean thermodynamics, Gibbs

himself scarcely applied this notion to solids. Nevertheless, it was Gibbs who was first to show that a

soluble solid can be not only in mechanical, but also in chemical (diffusion) equilibrium simultaneously

with three its solutions at different pressures (Fig. 1). Gibbs derived the equilibrium condition [7, pp. 195,

217]

f � Ek �
X
i

m0
ici

c j
¼ m00

jðkÞ ðk ¼ 1�3Þ; (2.24)

where f is the free energy density, c concentration (the amount of matter per unit volume); the subscripts

refer: i to mobile species of a solid (Gibbs called them ‘‘fluids absorbed by a solid’’), j to the matter of the

solid (the immobile species forming the solid lattice), k to the orientation of the solid surface (when the

normal to the surface corresponds to one of the principal directions 1–3). The chemical potentials have

been marked with the single prime if they refer to the solid and with the double prime if they refer to the

liquid, so that Eq. (2.24) represents the phase equilibrium condition which is traditionally perceived as

the equality of chemical potentials in adjacent phases. Of course, this interpretation has to be proven (and

will be proven below). If we actually identify the left-hand side of (2.24) with the chemical potential of

the immobile species in a solid m0
jðkÞ:

m0
jðkÞ ¼

f � Ek �
P

i m
0
ici

c j
; (2.25)
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such chemical potential seems to be defined not uniquely since it depends on the choice of direction k. In

reality, however, the chemical potential is defined quite uniquely, but as a tensor:

m̂0
j�

m0
jð1Þ 0 0

0 m0
jð2Þ 0

0 0 m0
jð3Þ

0
BB@

1
CCA: (2.26)

We have here written tensor m̂0
j straightway in the diagonal form since, according to Eq. (2.25), it

should reproduce the symmetry of the stress tensor. It should be noted, however, that Eq. (2.25)

certainly cannot serve as the definition of the chemical potential. Actually, Eq. (2.25) is a thermo-

dynamic relationship and needs a proof (see below). As for the definition of the chemical potential

tensor, it should be formulated by using the conventional method accepted in thermodynamics (we

will represent it too).

It looks like a historical paradox that Gibbs, who was engaged not only in thermodynamics, but also in

the vector and tensor calculus, did not introduce the notion of the chemical potential tensor. However,

there was a reason for this since the chemical potentials of immobile species in solids did not play the

same role as the chemical potentials of mobile species in fluids. In any case, Gibbs actually substantiated

the tensorial nature of chemical potential. Nevertheless, he did not write the word ‘‘tensor’’ for chemical

potentials, and this stimulated a number of scientists (see, e.g. [8–14]) to useless attempts to create the

thermodynamics of elastic bodies on the ground of combining anisotropic stress with isotropic chemical

potential. A survey was given by Kamb [15] who concluded: ‘‘among the outstanding theories, only that

of Gibbs has any validity’’.

1960s were marked with a hitch in understanding the tensorial nature of chemical potential.

Podstrigach, with respect to solids [16–19] (see also [20]), and Stuke, with respect to irreversible

processes [21,22], were first to speak openly about the chemical potential (and Stuke also about

temperature) as a tensor. Sooner or later (and often independently of each other), a number of other

researchers had come to the same approach [23–31]. However, the theories formulated are not quite

consistent. Stuke [22] has come to the denial of possibility of the equilibrium anisotropy of the stress

tensor in fluids, although such anisotropy is known to be typical for fluid surface layers or smectic

liquid crystals. Also the formulation of the problem of diffusion in elastic bodies [24] seems to be

contradictory.

At the same time, the very elementary problem, a rigorous definition of the chemical potential tensor,

was not understood completely. Most authors gave no definition at all and postulated thermodynamic

relationships for the chemical potential tensor at once. Meanwhile, the problem is not so simple. First, if

the chemical potential is a tensor, its conjugate quantity, mass or the number of moles, should also be a

tensor, which looks quite improbable (mass is a typical scalar). Second, turning to the known

thermodynamic definition of chemical potential

m j�
dF

dNj

� �
T ;V;Ni 6¼ j

; (2.27)

free energy F and the number of moles of the jth component Nj, as well as the temperature T, the volume

V, and the number of moles of other components as subscripts, are scalar quantities. A similar situation,
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however, exists for the known pressure formula

p ¼ � dF

dV

� �
T ;Ni

; (2.28)

where only scalars stand too. We know that, when passing to a mechanically anisotropic system, the

constant volume condition is replaced by the more detailed condition of fixed boundaries (configuration)

of the system, and the volume change (as a shift of one of the boundaries characterized by the volume

displacement vector in (2.7)) is related to a direction, which results in introducing the volume

displacement tensor in (2.9) and the strain tensor in (2.10). As a result, (2.28) is replaced by (2.15).

Similarly, we should attach a directed character to the mole number variation in Eq. (2.27) when passing

to an anisotropic body. In other words, the definition of the chemical potential tensor according to

Eq. (2.27) implies the derivative denominator to be converted into a tensorial quantity. However, this can

be done in various ways. Operating with the free energy density (as a scalar), Podstrigach introduced a

density tensor [19] (or a concentration tensor to speak about a multicomponent system [20]), but this is

the same as introducing the mass tensor. Logically, the free energy density should also be understood as a

tensor in this formalism, which is nonsense. By contrast, not mass itself but its directed variation was

considered as a tensor in the author’s approach [1,30,31], whereas density, concentration, and the free

energy density remain ordinary scalar quantities. Below, we will show how the chemical potential tensor

is derived from a correct definition.

2.2.2. Direct derivation of the chemical potential tensor from its thermodynamic definition

First of all, we have to reformulate the chemical potential definition to make it applicable to

anisotropic systems. For a mechanically anisotropic body, the condition of constancy of the volume

in (2.27) is replaced by the much more powerful condition of a fixed configuration (the constancy of the

volume displacement tensor V̂) of the body, as if it were placed in a rigid container. We characterize the

local orientation of the body boundary with the unit vector of the outer normal n. The change of the body

mass can only result from the matter transfer through the boundaries, which can occur in any direction.

Therefore, the local directed change, Nj, of the number of moles of the jth component may be identified

with the transfer vector �Nj taken with the opposite sign (since the mass growth direction is always

reverse to the direction of the mass transfer to the body). The transfer vector is defined as the amount of

matter Nj transferred in the direction �Nj/Nj through an elementary (unnecessarily unit) area perpendi-

cular to the direction of transfer. If such an area is oriented arbitrarily with its unit normal n, the matter

amount Nj(n) transferred through it, is

NjðnÞ ¼ �N j � n ¼ Nj cos’ (2.29)

where w is the angle between the transfer vector and the direction of a normal to the surface (the normal

flux transfers the maximum amount of matter through the surface, while the tangential flux transfers no

matter at all).

One more simple interpretation of the vector Nj is possible. We above introduced the volume

displacement vector describing a displacement of one of the body boundaries at a fixed mass of the body

when any displacement is a strain. Let us now imagine the state of strain to be fixed while the condition of

the mass constancy is canceled. Then the same vector will describe the boundary movement due to the

mass change, and we may introduce the mass displacement vector of the jth component, Nj, as the
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product of the concentration of the jth component Fj and the volume displacement vector V:

N j ¼ c jV: (2.30)

The volume displacement vector just equals the transfer vector taken with the reverse sign, so that both

the definitions of Nj coincide. However, the boundary is immobile in our process of transfer, and

Eq. (2.30) is simply the method of calculation of Nj, such as if the boundary would move. One may

always imagine that the boundary first moves, containing a new portion of matter, and then returns to its

original position by means of deformation of the system at a given amount of matter. The second stage of

the process does not contribute to Eq. (2.30) which, thus, is also quite applicable to the case of transfer

with a fixed boundary.

Since the transfer of matter in the system with fixed boundaries under consideration, is determined by

the fields of two independent vectors �Nj and n, it is possible to introduce the transfer tensor �N̂ j and its

reversal, the mass displacement tensor N̂ j. By analogy with Eq. (2.30), it is the simplest to define the mass

displacement tensor via the volume displacement tensor (2.9) as

N̂ j ¼ c jV̂: (2.31)

Designating the values of vector Nj corresponding to the coordinate axes directions as Nj(1), Nj(2), and

Nj(3), we write by analogy with (2.9)

N̂ j�
X3

s¼1

isN jðsÞ �
Njð11Þ Njð12Þ Njð13Þ

Njð21Þ Njð22Þ Njð23Þ

Njð31Þ Njð32Þ Njð33Þ

0
B@

1
CA (2.32)

As the three vectors are chosen arbitrarily, we may choose them in parallel with the coordinate axes, so

defining the mass displacement tensor as diagonal in a given (and symmetrical in any other) coordinate

system. Its diagonal term Nj(ss) (s = 1–3) determines the amount of the jth component added through the

boundary perpendicular to the s-direction. The trace of the tensor (2.32) yields the total change of the

number of moles of the jth species along all directions (cf. (2.11))

Tr N̂ j�
X3

s¼1

NjðssÞ ¼ Njð¼ DNjÞ (2.33)

(the form given in parenthesis refers to the case when Nj is understood as not transferred but the whole

amount of component j in the system, the differentials of both the quantities coinciding). As for non-

diagonal terms, they refer to the displacement of matter along the boundaries and produce no increase of

matter in the system. We now can generalize Eq. (2.27) and define the chemical potential tensor of the jth

species, m̂ j, as

m jðstÞ �
@F

@NjðstÞ

� �
T ;V̂;Ni 6¼ j

ðs; t ¼ 1�3Þ; (2.34)

where mj(st) are the components of the chemical potential tensor. The corresponding contribution to the

free energy differential from the jth species is

dms ¼ vsa d pa þ vsb d pb � a ds: (2.35)
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By using the definition of the mass displacement tensor, we simply formulate the algorithm of transfer

of matter from various sides to the system under consideration. This does not yet mean that the works of

transfer of a given amount of matter from different sides are different. The result depends on the behavior

of a given species in the system. If the species is mobile and moves freely over the whole volume of the

system, all positions of its particles are equivalent, and, therefore, the work of transfer can in no way

depend on the direction of transfer. Such situation is typical for fluids, but can be also realized in solids if

they contain mobile species (as, for instance, metal’s own electron gas or a foreign gas dissolved in a

metal) migrating inside the solid lattice. In such cases, the chemical potential tensor is isotropic

(mj(1) = mj(2) = mj(3) � mj), and, according to Eq. (2.26), we have

m̂ j ¼ m j

1 0 0

0 1 0

0 0 1

0
B@

1
CA�m j1̂ (2.36)

This permits returning to the simple definition, Eq. (2.27), although a mobile species can be subjected to

anisotropic stresses in some lattice cavities due to the action of the lattice field. As for an immobile

species forming the solid lattice, it is unable to penetrate into the lattice depth and only can throw out the

lattice outside. The transfer of an additional portion of matter in a rigid container inevitably leads to the

compression of the body present in the container, the work of compression being dependent on direction

for the body in the mechanically anisotropic state. Hence, the work of transfer itself and the

corresponding change of free energy depend on the direction of transfer, which just cause the tensorial

character of the chemical potential.

Possessing now a rigorous definition of the chemical potential tensor, Eq. (2.34), we can proceed to the

direct calculation of the chemical potential of an immobile species. Let us select an imaginary elementary

cube with its faces perpendicular to the coordinate axes (generally, not coinciding with the principal

directions of the stress tensor). Fig. 2 shows the section of the cube by the coordinate plane xy (x1x2) and

the direction of the mass displacement vector dNj of species j on the selected face 1 perpendicular to the

x-axis (other faces of the cube are assumed to be rigid walls). In the course of transfer, a new portion of

matter builds an addition to the lattice and simultaneously deforms all the contents of the cube. The

change of the free energy F of the cube in this complex process can be estimated as follows.

We divide the process into two stages. In the first stage, the solid lattice simply grows in the direction

pointed out (getting out of the cube, Fig. 2) with maintaining its mechanical state. With the transfer vector

�dNj(1) (and the mass displacement vector dNj(1)), dNj(11) moles of component j will attach to the cube
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face and occupy the volume

dV11 ¼ v j dNjð11Þ; (2.37)

where v j is the molar volume of the solid in its initial state. Herewith, the configuration of the new portion

of the lattice will turn to be skew if the transfer vector is not directed along the normal to the face selected.

In the second stage, we so deform the new portion of the lattice as to insert it within the initial cube

boundaries. We organize the deformation in two steps: we first rectify the skew configuration of the new

portion of the lattice (not yet inserting it in the cube) and then slide the whole portion (already as a

rectangular plate) inside the cube (Fig. 2). Pure shear (with no change of the volume dV11) work of

rectifying the skew angle in the xy-plane is

dF12 ¼ �E12 dV12 ¼ �E12v j dNjð12Þ; (2.38)

where E12 is the component of the shear stress along the y-axis. The shear work along the z-axis is

calculated similarly. Obviously, this type of contribution to free energy only exists provided the vector

dNj(1) deviates from the normal to the cube face.

It remains to estimate the change in free energy at inserting the already rectangular plate into the cube.

This change includes two contributions. The first corresponds to the compression of the matter, being

present before in the cube, in the x-direction to make room of the volume dV11 for the new portion of

matter. The work done yields the first contribution to the free energy change. The second contribution

results from filling the volume dV11 with the immobile species in the form of the same lattice as in the rest

volume. Evidently, this contribution can be written as f dV11 if the lattice initially did not contain mobile

species. If, however, there are mobile species, f has a contribution from them and refers to the initial

content of the cube. The free energy density in the volume dV11, where there are no mobile species, will

be smaller by the quantity
P

i mici As a result, the free energy change in the unit cube will be

dF11 ¼ �E11 dV11 þ f �
X
i

mici

 !
dV11 ¼ v j f �

X
i

mici � E11

 !
dNjð11Þ: (2.39)

Summing up (2.38), (2.39) and their analogues for other faces, we now can write the expression for the

partial differential of free energy at a fixed system configuration and constant amounts of all other species

but species j, as

ðdFÞV̂;Ni 6¼ j
¼ v j

X3

s;t¼1

f �
X
i

mici

 !
dst � Est

" #
dNjðstÞ: (2.40)

Dividing now the left-hand and right-hand sides of (2.40) by dNj(st) and using the definition expressed in

(2.34), we arrive at the expression for chemical potential

m jðstÞ ¼ v j f �
X
i

mici

 !
dst � Est

" #
(2.41)
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or, in a tensorial form,

m̂ j ¼ v j f �
X
i

mici

 !
1̂ � v jÊ; (2.42)

where 1̂ is the unit tensor shown in (2.36).

Since the unit tensor is maintained in any coordinates, it follows from (2.42) that the chemical

potential tensor becomes diagonal in the same coordinate system that diagonalizes the stress tensor. For

the principal directions, Eq. (2.41) takes the form

m jðkÞ ¼ v j f � Ek �
X
i

mici

 !
ðk ¼ 1�3Þ: (2.43)

It is easy to see that (2.43) is the same as (2.25). Hence, we have proved that the left-hand side of Gibbs’

Eq. (2.24) may be really understood as the principal values of the chemical potential tensor of an

immobile species of a solid. The values of the chemical potential in all directions can be calculated from

the principal values of the chemical potential. By the scalar multiplication of m̂ j by the unit normal vector

n at an arbitrary section of a solid (the surface of the solid is a particular and most important practical case

of such a section), we obtain the chemical potential vector at the section (cf. (2.3)):

m jðnÞ ¼ n � m̂ j: (2.44)

This vector points out the direction in which the chemical potential possesses its maximum value and

allows the determination of the chemical potential values in all other directions. Sooth to say, for the

interior of the solid lattice, these values are of interest only in the pure scientific respect and of no

practical value since an immobile species is capable to migration in no direction. If, however, one

addresses to the solid surface, the movement of the immobile species along the surface is also impossible,

whereas the recession of matter from the surface (at evaporation, dissolution, etc.) is quite real. Thus, the

normal component of the chemical potential vector

m jðnnÞ ¼ n � m jðnÞ (2.45)

is of the most practical significance. In the isotropic case, putting (2.36) reduces Eq. (2.44) to the form

m jðnÞ ¼ m jðn � 1̂Þ ¼ m jn; m jðnnÞ ¼ m j;

from where the chemical potential vector is seen to be same by its module in all directions.

To summarize the said above about chemical potential, we now can answer all the questions put above

concerning the relation between the anisotropy of stress and that of chemical potential. Generally,

chemical potential is a tensorial quantity. To speak about a mobile species, the tensor of its chemical

potential is always isotropic irrespective of the presence or absence of the stress (pressure) anisotropy. As

for the case of an immobile species, the symmetry of the tensor of its chemical potential always

reproduces the stress tensor symmetry, and, together with the stress tensor, the chemical potential tensor

can be both isotropic and anisotropic. On the other side, as is seen from (2.43), the fulfillment of the

mechanical equilibrium condition (2.18) for the stress tensor (@Ek=@xk ¼ 0 in the absence of fields) does

not secure the uniformity of the principal values of chemical potential, as it happens with mobile species

at equilibrium.
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The chemical potential tensor is defined similarly for particles of any nature, including ions whose

chemical potential (usually called electrochemical potential) contains the electric potential. This means

that, in principle, the chemical potential anisotropy in an electrochemical system can be verified by

measuring the anisotropy of the electric potential. This idea was realized by Durham and Schmalzried

[32]. To explain the scheme of their experiment, let us return to Fig. 1 and imagine a solid depicted to be a

metal and an adjacent liquid to be replaced (from all the sides) by a solid electrolyte. The metal ions form

a lattice and are immobile inside the metal, but, passing to the solid electrolyte, become mobile and

capable of free moving. Their saturation concentration is very small, so that only a negligible part matter

passes from the metal to the solid electrolyte. Similarly to a liquid, the solid electrolyte is capable of

transmitting pressure, but, in contrast with a liquid, the solid electrolyte has its own lattice that secures

mobile ions from a large pressure. If one assumes that stresses applied do not act on the mobile metal ions

at all, the difference of the ion electrochemical potentials in the solid electrolyte at different stresses will

be determined only by the electric potential difference, which is directly measurable. In this way the

anisotropy of the electric potential was registered. Thus, one can say that the tensorial nature of chemical

potential has been verified by experiment.

2.3. Fundamental thermodynamic equations

After deriving the mechanical and chemical terms, Eqs. (2.13) and (2.35), we now can compose the

fundamental equation for free energy as

dF ¼ �S dT þ Ê : dV̂þ m̂ j : dN̂ j þ
X
i

mi dNi; (2.46)

where S is entropy and T is temperature, superscripts j and i refer to immobile and mobile species,

respectively (the entropic term appears in the standard form according to the Gibbs equilibrium

principle). For the sake of simplicity, we assume a single immobile species to form the solid lattice.

This, however, is not a great loss in generality since any combination of solid species of a strictly fixed

composition (often called a material) can be thermodynamically considered as a unique immobile

species. Eq. (2.46) describes the thermochemical, thermomechanical, and mechanochemical effects in

solids. We begin the discussion with the first term on the right-hand side of Eq. (2.46).

2.3.1. The thermal term: is temperature also a tensor?

We have written the thermal term in its traditional form in Eq. (2.46). However, after we have

converted the material term to a tensorial form, the question arises: should the thermal term also been

written in a tensorial form? That was Stuke [21] who first declared temperature to be a tensor. Indeed, if

we remember that the entropy fluxes are vectors and that several fluxes can attack a system simulta-

neously, why not to introduce a tensorial temperature like we did with the chemical potential of an

immobile species when considering the matter flux vectors? However, we spoke just about an immobile

species. Once a species becomes mobile, its chemical potential acquires isotropy even in the case when

the anisotropy of stresses is maintained. The surface layer of a liquid can be an example: the normal and

transverse pressures are different in the surface layer (because of what surface tension arises), whereas

the chemical potentials of species are isotropic. All-pervading heat can scarcely remind an immobile

species and can rather be compared with a mobile species. The analogy between heat and a mobile

species becomes absolute if one turns to the phonon theory of dielectrics whose thermal properties are
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determined by the behavior of a gas of quasi-particles, phonons. Phonons move freely over the whole

volume of a system, and, no doubt, they form a mobile component. Then considering the temperature as a

kind of chemical potential of the phonons, we can conclude that it should be isotropic. When passing

from dielectrics to metals, electrons (to be more exact, their part forming the electron gas) join phonons in

the process of heat conduction, but the electrons are also typical mobile species. Thus the arguments

related to the nature of heat draw us to the following conclusion: even if temperature is really a tensor, it

should be a spherical tensor. Then, similarly, to the last chemical term in Eq. (2.46), the thermal term may

also be written in a scalar form.

2.3.2. Generalized Gibbs–Duhem equation

Following the standard procedure, we first have to deduce an integral expression for free energy. Let us

choose a direction r in space (with one of the axes of Cartesian coordinates along the direction) and move

the body boundary in this direction simultaneously with adding matter only along this direction at a fixed

physical state. For such process, Eq. (2.46) takes the form

dF ¼ Err dVrr þ m jðrrÞ dNjðrrÞ þ
X
i

mi dNi; (2.47)

where all the rest components of the volume and mass displacement tensors are zero. The integration of

Eq. (2.47) yields

F ¼ ErrV þ m jðrrÞNj þ
X
i

miNi: (2.48)

Since the free energy value should be independent of the choice of the integration direction, it follows

from (2.48) that the sum ErrV + mj(rr)Nj is an invariant with respect to direction.

By differentiating Eq. (2.48), we have

dF ¼ Err dV þ V dErr þ m jðrrÞ dNj þ Nj dm jðrrÞ þ
X
i

mi dNi þ
X
i

Ni dmi (2.49)

Accounting for that the perfect differentials of volume and the number of moles are composed of their

directed variations (see Eqs. (2.89), (2.90), and (2.33)), we can rearrange Eq. (2.49) as

dF ¼ Err

X3

l¼1

V dell þ V dErr þ m jðrrÞ
X3

s¼1

dNjðssÞ þ Nj dm jðrrÞ þ
X
i

mi dNi þ
X
i

Ni dmi (2.50)

Equating now the right-hand sides of (2.46) and (2.50) and taking into account (2.14) and (2.35), we

obtain

X3

l;m¼1

ðElm � dlmErrÞV delm � V dErr

¼ S dT �
X3

s;t¼1

ðm jðstÞ � dstm jðrrÞÞdNjðstÞ þ Nj dm jðrrÞ þ
X
i

Ni dmi (2.51)

where the Kronecker symbol dlm represents the components of the unit tensor 1̂. If the amount of the

immobile species does not change from any side (dNj(st) = 0) and only a change occurs in the mechanical
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state, Eq. (2.51) takes the form

X3

l;m¼1

ðElm � dlmErrÞV delm � V dErr ¼ S dT þ Nj dm jðrrÞ þ
X
i

Ni dmi; (2.52)

where, as in (2.51), the summation is actually carried out with respect to five and not six components of

the strain tensor since the coefficient of derr is zero (the fundamental Eq. (2.52) has been formed in such

manner that the independent variable err has been replaced by the independent variable Err). Dividing

Eq. (2.52) by the volume of the system V, we obtain

X3

l;m¼1

ðElm � dlmErrÞdelm � dErr ¼ sv dT þ c j dm jðrrÞ þ
X
i

ci dmi (2.53)

(sv is the bulk density of entropy) or, using the tensorial notation,

ðÊ� 1̂ErrÞ : dê� dErr ¼ sv dT þ c j dm jðrrÞ þ
X
i

ci dmi: (2.54)

When passing to an isotropic fluid system, the conditions are fulfilled Ê ¼ Err1̂ ¼ � p1̂ (i.e. Elm = �pdlm

where p is hydrostatic pressure), Nj = 0, and Eq. (2.52) changes to the well-known Gibbs–Duhem

equation

V d p ¼ S dT þ
X
i

Ni dmi: (2.55)

Thus, the fundamental Eq. (2.52) is a generalization of the Gibbs–Duhem equation for mechanically

anisotropic states. If a solid is isotropic, Eq. (2.52) is again reduced to classical Eq. (2.55), but with

immobile species included in the summation.

2.3.3. Directed partial quantities, a new class of thermodynamic variables

As is known, free energy is a thermodynamic potential at constant strain tensor, i.e. at a constant

volume to speak about isotropic systems. Isothermal–isobaric conditions are more practical, and that is

why free energy is often replaced by Gibbs energy G = F + pV. However, the definition of Gibbs energy

becomes not unique for mechanically anisotropic states since pressure (as well as stress) is different along

different directions. The quantity �Err plays the role of pressure in the r-direction, and we may define

Gibbs energy G in an anisotropic system as

Gr �F � ErrV (2.56)

to relate it, in this manner, to the direction choice (this is marked by the subscript at G). It can be

emphasized that, herewith, Gibbs energy does not become a directed quantity and remains, like any

energy, a typical scalar.

By differentiating Eq. (2.56) with putting (2.47) and accounting for (2.14) and (2.35), we arrive at the

differential fundamental equation for the Gibbs energy of a uniform anisotropic system

dGr ¼ �S dT þ V
X3

l;m¼1

ðElm � dlmErrÞdelm � V dErr þ
X3

s;t¼1

m jðstÞ dNjðstÞ þ
X
i

mi dNi (2.57)
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or, in tensorial notation,

dGr ¼ �S dT þ VðÊ� 1̂ErrÞ : dê� V dErr þ m̂ j : dN̂ j þ
X
i

mi dNi: (2.58)

By integrating Eq. (2.57) along the r-direction at constant Err, we obtain the integral expression for

Gibbs energy

Gr ¼ m jðrrÞNj þ
X
i

miNi: (2.59)

Correspondingly, for Gibbs molar energy, we have

gr ¼ m jðrrÞx j þ
X
i

mixi; (2.60)

where x is the mole fraction. After the differentiation of (2.59) and comparison with (2.57), we again

arrive, as expected, at Eq. (2.51) from where Eqs. (2.53) and (2.54) follow whose form does not depend

on the choice of a thermodynamic potential.

Eq. (2.59) shows that the Gibbs energy for a direction chosen is composed of chemical potentials. This

usually leads in thermodynamics to the representation of the chemical potential as a partial molar Gibbs

energy, and we see, in our particular case, that mj(rr) is a partial molar quantity of Gr. Indeed, from

Eq. (2.57) we obtain

m jðrrÞ ¼
@Gr

@NjðrrÞ

� �
T;elm 6¼ rr ;Err ;Njðst 6¼ rrÞ;Ni

; (2.61)

from where it follows that the normal component of the chemical potential tensor of an immobile species

in the r-direction is the increment of the Gibbs energy corresponding to this direction, at adding 1 mole of

the immobile species in the same direction to an infinitely large system. The addition is carried out at a

constant temperature and stress in the direction chosen, let alone that the variation of the mass of species

and of the system dimensions on all sides is forbidden. Changing Gr for an arbitrary extensive quantity,

the derivative in Eq. (2.61) provides the general definition of a partial molar quantity for a given direction.

Since the matter transfer is always directed, such extension of the notion of a partial molar quantity in

thermodynamics is natural and turns to be useful for quantities depending on direction. At the same time,

the application of this definition to quantities independent of direction, leads to ordinary partial molar

quantities (volume, entropy, the chemical potentials of mobile species, etc.).

For the sake of illustration, let us consider entropy S as a function of the independent variables

indicated in Eq. (2.57) and write the exact differential of entropy in the form

dS ¼ @S

@T
dT þ

X3

l;m¼1
ðlm 6¼ rrÞ

@S

@elm
delm þ @S

@Err
dErr þ

X3

s;t¼1

@S

@NjðstÞ
dNjðstÞ þ

X
i

@S

@Ni
dNi: (2.62)

Here the r-direction is the only direction along which the variation of the geometrical dimensions of a

system is possible. In this sense, the r-direction can be named a free direction, while the others can be

named restricted directions. Nevertheless, the addition of matter is possible from all sides, but the matter

is not compressed when adding in the free direction and is compressed by necessity when adding in
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restricted directions (to return the system to the original size in each restricted direction). In a

mechanically anisotropic system, compression in different directions leads to different states, including

also a difference in entropy, so that the value of the derivative @S/@Nj(st) depends on the choice of a

restricted direction. Let us now see whether or not the choice a free direction influences the value of the

derivative @S/@Nj(st).

In accordance with the terminology accepted in thermodynamics, we denominate as ‘‘open’’ the

directions along which the matter exchange is possible and as ‘‘closed’’ the directions along which the

matter exchange is forbidden. Let the matter transfer be possible only along the open direction r and all

other directions be closed. For this case, we write Eq. (2.62) as

dS ¼ @S

@T
dT þ

X3

l;m¼1
ðlm 6¼ rrÞ

@S

@elm
delm þ @S

@Err
dErr þ s̄ jðrrÞdNjðrrÞ þ

X
i

s̄i dNi; (2.63)

where s̄ jðrrÞ and s̄i are the partial molar entropies of the immobile (in the r-direction) species and of

mobile species, respectively, defined, according to (2.61), as

s̄ jðrrÞ �
@S

@NjðrrÞ

� �
T ;elm 6¼ rr ;Err ;Njðst 6¼ rrÞ;Ni

; (2.64)

s̄i�
@S

@Ni

� �
T ;elm 6¼ rr ;Err ;NjðstÞ;Nk 6¼ i

(2.65)

(the subscript k, as well as the subscript i, refers to mobile species). We apply Eq. (2.63) to a

parallelepiped slice of infinitesimal thickness in the r-direction and integrate Eq. (2.63) along the r-

direction at a given physical state (at constant T, elm 6¼rr, Err, s̄ jðrrÞ, and s̄i). The result of integration

S ¼ s̄ jðrrÞNj þ
X
i

s̄iNi (2.66)

shows that s̄ jðrrÞ and s̄i are really partial molar quantities. Formally, s̄ jðrrÞ is a partial molar quantity in the

r-direction, but, since the result (the quantity S) must be independent of direction, the quantity s̄ jðrrÞ
should be the same for all directions. Thus, in contrast with the derivatives of entropy for restricted

directions in Eq. (2.62), the derivative shown in Eq. (2.64) for a free and open direction does not depend

on the direction choice. Therefore, we may now omit the additional subscript (rr) by setting s̄ jðrrÞ ¼ s̄ j.
The same can be said about the partial molar volume

v̄ jðrrÞ �
@V

@NjðrrÞ

� �
T ;Vlm 6¼ rr ;Err ;Njðst 6¼ rrÞ;Ni

: (2.67)

However, it should be added here that the specificity of an immobile species (which forms the solid lattice

containing mobile species inside) makes the partial molar volume of an immobile species practically

undistinguishable from its molar volume. Thus, we may set v̄ jðrrÞ ¼ v j.

2.3.4. Thermomechanical relationships

If the amount of an immobile species is fixed (the system being closed all round for this species,

so that dN̂ j ¼ 0) and numbers 1 mole, Eq. (2.46) for free energy and Eq. (2.57) for Gibbs energy
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can be written as

d f j ¼ �s j dT þ v j

X3

l;m¼1

Elm delm þ
X
i

mi dNið jÞ; (2.68)

dgrð jÞ ¼ �s j dT þ v j

X3

l;m¼1

ðElm � dlmErrÞdelm � v j dErr þ
X
i

mi dNið jÞ; (2.69)

where f j � F /Nj, gr( j) � Gr/Nj, sj � S/Nj, and Ni( j) � Ni/Nj are free energy, Gibbs energy Gr, entropy, and

the number of moles of the ith mobile species per 1 mole of the immobile species, respectively. By the

cross differentiation in (2.68), we obtain the relationship

@s j
@elm

� �
T;est 6¼ lm;N̂ j;Ni

¼ �v j
@Elm

@T

� �
v̂;N̂ j;Ni

� � v jhlm; (2.70)

where, at fixing quantities, dummy indices run all possible values (the restrictions, if any, are pointed out:

for example, the condition of constancy est 6¼lm means that s and t run all possible values except l and m,

respectively, i.e. all the components of the strain tensor are fixed except elm; the constancy of the tensor

itself is indicated if all its components are fixed simultaneously). In Eq. (2.70), hlm is the thermal stress

coefficient showing what an additional stress, in a direction chosen, arises in a closed system of a fixed

configuration (therefore, v j acts as a constant here) when changing the temperature by one degree. The

value of the coefficient is determined by the equation of state of a system. The set of the coefficients hlm (l,

m = 1–3) makes the tensor of thermal stress coefficients, ĥ; that may be defined as the temperature

derivative of the stress tensor:

ĥ� @Ê

@T

� �
ê;N̂ j;Ni

: (2.71)

The tensor of thermal strain coefficients û (an analogue of the thermal dilatation coefficient for isotropic

systems) is defined as

û� @ê

@T

� �
Ê;N̂ j;Ni

: (2.72)

Both the tensors, ĥ and û, serve as main characteristics of the thermomechanical effect.

From Eq. (2.69) the cross relationships follow

@s j
@elm

� �
T;est 6¼ lm

st 6¼ rr

;Err ;N̂ j;Ni

¼ � @½v jðElm � dlmErrÞ�
@T

� �
est 6¼ rr ;Err ;N̂ j;Ni

; (2.73)

@s j
@Err

� �
T ;elm 6¼ rr ;N̂ j;Ni

¼ @v j

@T

� �
elm 6¼ rr ;Err ;N̂ j;Ni

; (2.74)
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@½v jðElm � dlmErrÞ�
@Err

� �
T ;est 6¼ rr ;N̂ j;Ni

¼ � @v j

@elm

� �
T ;est 6¼ lm

st 6¼ rr

;Err ;N̂ j;Ni

: (2.75)

Introducing the thermal coefficient of linear dilatation in the r-direction (all other directions are

blockaded by the conditions of fixation of the strain tensor components):

urr �
1

v j

@v j

@T

� �
elm 6¼ rr ;Err ;N̂ j;Ni

: (2.76)

the thermal stress coefficient under the condition that the normal stress in the r-direction is kept constant

hlmðrrÞ �
@Elm

@T

� �
est 6¼ rr ;Err ;N̂ j;Ni

; (2.77)

and the isothermal compressibility in the r-direction

xrr �
1

v j

@v j

@Err

� �
T ;elm 6¼ rr ;N̂ j;Ni

; (2.78)

we rewrite Eqs. (2.73)–(2.75) in the form

@s j
@elm

� �
T ;est 6¼ lm

st 6¼ rr

;Err ;N̂ j;Ni

¼ �urrv jðElm � dlmErrÞ � v jhlmðrrÞ; (2.79)

@s j
@Err

� �
T;elm 6¼ rr ;N̂ j;Ni

¼ v jurr; (2.80)

@Elm

@Err

� �
T ;est 6¼ rr ;N̂ j;Ni

¼ dlm � 1

v j

@v j

@elm

� �
T ;est 6¼ lm

sr 6¼ rr

;Err ;N̂ j;Ni

�xrrðElm � dlmErrÞ: (2.81)

In accordance with (2.11), only the normal components of the strain tensor contribute to the volume

change. Therefore, only a small (because of small compressibility) term �xrrElm remains for the shear

components of the stress tensor Elm (l 6¼ m) on the right-hand side of Eq. (2.81). For the normal

component Ell (ll 6¼ rr), with the account for the fixation of the strain tensor component in the third

direction, we have

1

v j

@v j

@elm

� �
T ;est 6¼ lm

st 6¼ rr

;Err ;N̂ j;Ni

¼ @ðell þ errÞ
@ell

¼ 1 � krl; (2.82)
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where krl is two-dimensional Poisson’s ratio in the rl-plane. In this case, Eq. (2.81) changes to the form

@Ell

@Err

� �
T ;est 6¼ rr ;N̂ j;Ni

¼ krl � xrrðEll � ErrÞ: (2.83)

For an incompressible medium (krl = 1, xrr = 0), Eq. (2.83) yields equal variations of the acting stress and

the transverse stress at a one-sided compression (the result is known in the theory of elasticity when using

ordinary Poisson’s ratio). The same result directly follows from Eq. (2.81) at a constant v.

2.3.5. Expressions for chemical potentials

In the absence of mobile species, Eq. (2.52) yields the differential of the chemical potential of an

immobile species in a given direction

dm jðrrÞ ¼ �s j dT þ v j

X3

l;m¼1

ðElm � dlmErrÞdelm � dErr

" #
; (2.84)

where sj and v j are the molar entropy and volume of the immobile species, respectively. The chemical

potentials of mobile species are controllable, and, if they are fixed, Eq. (2.52) again changes to (2.84). In

this case, however, sj and v j should be called not the molar entropy and volume of an immobile species,

but the entropy and volume of a system per 1 mole of the immobile species (as in Eqs. (2.68) and (2.69)).

Herewith, the quantity v j maintains its meaning as the molar volume of an immobile species if mobile

species do not outstep the boundary of a lattice formed by the immobile species. Eq. (2.84) is evident to

be valid not only in the absence of mobile species, but also when the chemical potentials of mobile

species are kept constant. It is more typical for practice, however, that not chemical potentials but the

amounts of mobile species are constant (say, in a single piece of a solid). So we have to find expressions

for the chemical potentials of both immobile and mobile species under such conditions. General

expressions for chemical potentials can be derived from fundamental equations.

Turning first to Eq. (2.46), we rewrite it in the form

dF ¼ �S dT þ V
X3

l;m¼1

Elm delm þ
X3

s;t¼1

m jðstÞ dNjðstÞ þ
X
i

mi dNi: (2.85)

If the amount of an immobile species is fixed on all sides (dN̂ j ¼ 0), the variables T, elm and Ni remain in

Eq. (2.85). Writing the perfect differentials of mj(st) and mi in this variables and using the cross

relationships following from Eq. (2.85), we arrive at the expressions

dm jðstÞ ¼ � @S

@NjðstÞ
dT þ

X3

l;m¼1

@Elm

@NjðstÞ
V delm þ

X
i

@mi

@NjðstÞ
dNi; (2.86)

dmi ¼ � @S

@Ni
dT þ

X3

l;m¼1

@Elm

@Ni
V delm þ

X
i

@mi

@Ni
dNi: (2.87)

All the derivatives in Eqs. (2.86) and (2.87) are taken under the conditions shown in Eq. (2.34).

Due to the constancy of the volume, Eq. (2.87) for the chemical potential of a mobile species can be
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written as

dmi ¼ � @sv
@ci

dT þ
X3

l;m¼1

@Elm

@ci
delm þ

X
i

@mi

@ci
dci; (2.88)

where sv � S=V is the entropy density and ci � Ni/V is the concentration of the ith mobile species.

It is implied in the derivative @Elm/@Nj(st) that the lattice of an immobile species is built up under the

condition of the volume constancy, i.e. under compression. The relation of this derivative to the elastic

properties of the lattice is [5]

@Elm

@NjðstÞ
¼ � v j

V

@Elm

@est
� � v j

V
llmst; (2.89)

where llmst is a corresponding elasticity modulus. Putting Eq. (2.89) in Eq. (2.86) yields

dm jðstÞ ¼ � @S

@NjðstÞ
dT � v j

X3

l;m¼1

llmstdelm þ
X
i

@mi

@NjðstÞ
dNi: (2.90)

It is of note that the derivatives of entropy in Eqs. (2.88) and (2.90) are not partial molar quantities.

Indeed, these derivatives are taken at the constancy of the temperature and of the strain tensor of a system

(i.e. at the invariability of the whole boundary of the system). Under such conditions, the injection of an

additional amount of the immobile species to the lattice along a certain direction, means the lattice

compression and a change in the mechanical state (stress) of the lattice even in this direction, let alone the

others.

More convenient expressions can be obtained from Eq. (2.57) for Gibbs energy in the r-direction

where, comparably with Eq. (2.85), the independent variable err has been replaced by Err. Considering

the chemical potentials as functions of temperature T, the components elm, except err, of the strain tensor,

and the amounts (the mole numbers) of mobile components Ni (at dN̂ j ¼ 0) and using the cross

relationships following from Eq. (2.57), the differentials of chemical potentials mj(st) and mi are given, in

this case, by the expressions

dm jðstÞ ¼ � @S

@NjðstÞ
dT þ

X3

l;m¼1
lm 6¼ rr

@½VðElm � dlmErrÞ�
@NjðstÞ

delm � @V

@NjðstÞ
dErr þ

X
i

@mi

@NjðstÞ
dNi; (2.91)

dmi ¼ � @S

@Ni
dT þ

X3

l;m¼1
lm 6¼ rr

@½VðElm � dlmErrÞ�
@Ni

delm � @V

@Ni
dErr þ

X
i

@mi

@Ni
dNi: (2.92)

The volume V in these expressions is not constant any longer and is subjected to differentiation. By

contrast, the stress Err is considered as a constant, so that the term dlmErr disappears at differentiation. As

a result, Eqs. (2.91) and (2.92) take the form (for mobile species, the derivatives of entropy and volume
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may at once be replaced by partial molar quantities):

dm jðstÞ ¼ � @S

@NjðstÞ
dT þ

X3

l;m¼1
lm 6¼ rr

@V

@NjðstÞ
ðElm � dlmErrÞ þ V

@Elm

@NjðstÞ

� �
delm � @V

@NjðstÞ
dErr

þ
X
i

@mi

@NjðstÞ
dNi; (2.93)

dmi ¼ �s̄i dT þ
X3

l;m¼1
lm 6¼ rr

v̄iðElm � dlmErrÞ þ V
@Elm

@Ni

� �
delm � v̄i dErr: (2.94)

Eq. (2.93) can be further transformed by detailing the derivatives @V/@Nj(st) and @Elm/@Nj(st) with

accounting for that the r-direction is free. For the first of these derivatives, there is the relationship [5]

@V

@NjðstÞ
¼ dstksrv j; (2.95)

where ksr � �derr/dess is two-dimensional Poisson’s ratio in the sr-plane. As for the derivative @Elm/

@Nj(st), we may again use Eq. (2.89) with the specification that the modulus llmst is now of another

meaning (we mark it with a prime). Indeed, since the r-direction is free, the addition of matter along

another (always restricted) direction will mean not only compression of matter in this direction, but also

dilatation in the r-direction in the accordance with Poisson’s ratio. If, however, the matter is introduced

along the free direction, the intensive parameters of a system do not change at all and the derivative @Elm/

@Nj(st) becomes zero. Accounting for the said above, we write Eq. (2.93) at st 6¼ rr as

dm jðstÞ ¼ � @S

@NjðstÞ
dT þ v j

X3

l;m¼1
lm 6¼ rr

½dstksrðElm � dlmErrÞ � l0lmst�delm � dstksrv j dErr þ
X
i

@mi

@NjðstÞ
dNi

(2.96)

The simplest expression for the chemical potential of an immobile component results at st = rr. Then,

according to the definition of partial molar quantities, the derivatives of entropy and volume are replaced

by their partial molar values for the immobile component (herewith, the partial molar volume may be

replaced by the molar volume, as it was said above), whereas l0lmrr becomes zero. As a result, we have

dm jðrrÞ ¼ �s̄ j dT þ v j

X3

l;m¼1
lm 6¼ rr

ðElm � dlmErrÞdelm � v j dErr þ
X
i

@mi

@NjðrrÞ
dNi: (2.97)

By comparing Eq. (2.97) at fixed amounts of mobile species (Ni = 0) with Eq. (2.84), we notice that the

only difference is the replacement of molar entropy by partial molar entropy. The conditions of

applicability of Eq. (2.97) are of practical significance since the transfer of matter more often than

not occurs along the free direction (other conditions can take place, for example, in the presence of rigid

semipermeable walls).
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2.4. Affinity tensor. Mechanochemistry of solids

The concept of (chemical) affinity was introduced in thermodynamics by De Donder in 1920s and

became widely known after ‘‘Chemical Thermodynamics’’ by Prigogine and Defay formulated using

Gibbs’ and De Donder’s methods (see, e.g. [33]). Affinity was primarily referred to chemical reactions,

but can be understood more generally and also applied to physical processes. For every physicochemical

process (or every process stage), there are an initial state and a final state, which can differ not only in

time, but also in space. We represent the equation of a physicochemical process in the general formX
i

n0iB
0
i)

X
i

n00i B
00
i ; (2.98)

where Bi and ni are the chemical symbol and the stoichiometrical coefficient of the ith species in a system,

respectively, the single prime refers to the initial state and the double prime to the final state (in particular,

primes are necessary for distinguishing between states of a given substance in different points of space).

The summation in Eq. (2.98) is carried out formally over all species, although some of the stoichiome-

trical coefficients can be zero. For example, the stoichiometrical coefficients of reaction products are

equal to zero on the left-hand side of Eq. (2.98) and the stoichiometrical coefficients of initial species are

equal to zero on the right-hand side of Eq. (2.98) in the case of a chemical reaction without transport

(when there are no spatial distinctions). For transport processes without chemical reactions (diffusion,

evaporation, dissolution, etc.), the stoichiometrical coefficients of a given substance on the left-hand and

right-hand sides of Eq. (2.98) are not zeros, but coincide and are eliminated when Eq. (2.98) is written for

each substance separately

B0
i)B00

i : (2.99)

For the process described by Eq. (2.98), affinity A is defined as

A�
X
i

ðn0im0
i � n00i m

00
i Þ; (2.100)

where mi is the chemical potential of the ith species. If the affinity expressed in (2.100) is positive, the

process described by Eq. (2.98) is realized and the process rate is proportional toA. If, however, the affinity

expressed in (2.100) is negative, the reverse process will take place. The primes in Eq. (2.100) may be

omitted for a chemical reaction without transport, which changes Eq. (2.100) to the traditional form

A�
X
i

nimi; (2.101)

where, as usual, the stoichiometrical coefficients are taken with the ‘‘plus’’ sign for initial substances and

with the ‘‘minus’’ sign for reaction products. In the opposite case when chemical reactions are absent, and

there are only transport processes, Eq. (2.100) is written separately for each substance with introducing

individual affinities Ai:

Ai�m0
i � m00

i ; (2.102)

which corresponds to the transport process Eq. (2.99).

The above expressions imply the affinity to be isotropic, which corresponds to fluid systems.

However, chemical reactions and transport processes occur in solids too. Accounting for the tensorial
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nature of chemical potential, we have to redefine, in accordance with (2.100), affinity as a tensor

[4]:

Â�
X
k

ðn0km̂0
k � n00k m̂

00
k Þ�D

X
k

nkm̂k; (2.103)

where D symbolizes a difference between quantities marked with a single and double primes. Since both

immobile (j) and mobile (i) species can participate simultaneously in a process, and the chemical

potential tensor of a mobile species is of spherical symmetry, we may rewrite Eq. (2.103) as

Â�D
X
j

n jm̂ j þ 1̂D
X
i

nimi (2.104)

or, for the components of the chemical affinity tensor,

Ast �D
X
j

n jm jðstÞ þ dstD
X
i

nimi: (2.105)

To bring into the picture the influence of temperature and mechanical state on the components of

chemical affinity (at given amounts of all substances in the initial and final states of a physicochemical

process), one should write Eq. (2.105) in a differential form

dAst ¼ D
X
j

n j dm jðstÞ þ dstD
X
i

ni dmi (2.106)

and apply any of the above expressions for the chemical potentials of immobile and mobile species,

Eqs. (2.88), (2.90) or (2.94), (2.97). If the transport of matter proceeds in the r-direction, the most

important for practice turns to be the expression

dArr ¼ D
X
j

n j dm jðrrÞ þ D
X
i

ni dmi: (2.107)

Substituting first Eqs. (2.88) and (2.90), and then Eqs. (2.94) and (2.97) in Eq. (2.107), we obtain two

expressions for the chemical affinity differential with different sets of variables:

ðdArrÞN̂ j;Ni
¼ �D

X
j

n j
@S

@NjðrrÞ
dT þ v j

X3

l;m¼1

llmrr delm

 !
� D

X
i

ni
@sv
@ci

dT �
X3

l;m¼1

@Elm

@ci
delm

 !
;

(2.108)

ðdArrÞN̂ j;Ni
¼ �D

X
j

n js̄ j dT � D
X
i

nis̄i dT þ D
X
j

n jv j

X3

l;m¼1

ðElm � dlmErrÞ delm � dErr

" #

þ D
X
i

ni
X3

l;m¼1

v̄iðElm � dlmErrÞ þ V
@Elm

@Ni

� �
delm � v̄i dErr

( )
:

(2.109)

For processes developing without the movement of matter in space (chemical reactions, polymorphous

transitions, etc.), the initial and final states are usually compared at same temperature. Then the perfect
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differential of chemical affinity, Eq. (2.108), can be written in a more compact form as

ðdArrÞN̂ j;Ni
¼ �D

X
j

n j
@S

@NjðrrÞ
þ
X
i

ni
@S

@Ni

 !
dT �

X3

l;m¼1

D
X
j

n jv jllmrr �
X
i

ni
@Elm

@ci

 !
delm

" #
:

(2.110)

If not only temperature, but also stress Err is equal for the initial and final states, the representation of the

perfect differential of chemical affinity (2.109) is simplified:

ðdArrÞN̂ j;Ni
¼ �DS̄ dT � DV̄ dErr þ

X3

l;m¼1

D V̄ðElm � dlmErrÞ þ V
X
i

ni
@Elm

@Ni

" #
delm

( )
: (2.111)

Here S̄ and V̄ are the entropy and volume of the stoichiometric mixture of substances:

S̄�
X
j

n js̄ j þ
X
i

nis̄i; (2.112)

V̄�
X
j

n jv j þ
X
i

niv̄i; (2.113)

so that �DS̄ and �DV̄ are the entropy and volume effects of a physicochemical process under

consideration, respectively.

The value of chemical affinity determines the rate of a physicochemical process, while the sign of

chemical affinity determines the direction of the process (‘‘plus’’ corresponds to the direct, a ‘‘minus’’ to

the reverse process). When affinity is zero, process ceases and the equilibrium occurs between the

substances in the initial and final states. Generally, chemical affinity and the rate of a physicochemical

process are related by a coefficient whose value depends on the temperature and mechanical state of a

system. Therefore, one cannot ensure that, in the course of the process, the constancy of chemical affinity

means the stationarity of the process. This is true only in the case of equilibrium since the process rate will

be always zero if the chemical affinity stays equal to zero. For this reason, equations for stationary affinity

(which are valid at any its value) turn to be the most important in practice for the states of equilibrium and

are chiefly used for studying just equilibrium states.

At given amounts of substances in the initial and final states of a physicochemical process, the

differential equation of the stationarity of chemical affinity can be obtained from Eqs. (2.110) and (2.111)

by setting dArr ¼ 0:

D
X
j

n j
@S

@NjðrrÞ
þ
X
i

ni
@S

@Ni

 !
dT ¼ �

X3

l;m¼1

D
X
j

n jv jllmrr �
X
i

ni
@Elm

@ci

 !
delm

" #
; (2.114)

DS̄ dT ¼ �DV̄ dErr þ
X3

l;m¼1

D V̄ðElm � dlmErrÞ þ V
X
i

ni
@Elm

@Ni

" #
delm

( )
: (2.115)

Eq. (2.114) gives temperature as a function of the components of the strain tensor in the initial and final

states of a process. Eq. (2.115) gives temperature as a function of the normal component of the stress

tensor in the r-direction and the complementary components of the strain tensor for the initial and final
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states. If a process is carried out, as it often occurs, at a constant stress, all the components of the strain

tensor can be expressed through (common for the initial and final states) six components of the stress

tensor. Using these variables, the dimensionality of the state diagram is 7, and the temperature of

stationary affinity makes a six-dimensional hypersurface in a seven-dimensional space. It is of note that

the second term on the right-hand side of Eq. (2.115) reflects the specificity of the mechanical anisotropy

of a system. This term disappears at passing to a mechanically isotropic state (we remind that the

derivative standing there is taken at constant Err and, therefore, becomes zero at Elm = Err).

The above relationships are of general character and applicable to any processes in time and space. To

understand them better, we below consider polymorphous transitions as a representative example in

which both directed and not directed processes act and the role of mechanical anisotropy is pronounced.

2.5. Polymorphous transformations

The gist of polymorphism is that, depending on external conditions (thermal and mechanical action,

external fields, etc.), spatial structures of various types can arise in a system of a given chemical

composition. In other words, the lattice formed by an immobile species can change its type (symmetry)

depending on external conditions. The concept of a lattice is applicable not only to crystals, but also to

amorphous solids (in the latter case, the lattice is characterized by a random locations of the lattice sites in

space). Therefore, the amorphization of solids can also be classified conditionally as a polymorphous

transformation. From the thermodynamic standpoint, polymorphous transformations are phase transi-

tions of the first or second order. Let us consider both the cases separately. For the sake of simplicity, a

system is implied to contain only a single immobile species, mobile species being absent.

2.5.1. First-order phase transitions

If phase a transforms to phase b through the mechanism of a first-order phase transition, the phases

contact each other and have a common interface. The r-direction of the matter transfer from phase a to

phase b can be then defined as the direction of the external, with respect to phase a, normal to the

interface. Correspondingly, the transition will be governed by the chemical affinity

Arr �ma
jðrrÞ � m

b

jðrrÞ; (2.116)

where ma
jðrrÞ and m

b

jðrrÞ are the components in the r-direction of the chemical potential tensor for the only

immobile component in phases a and b, respectively. At the phase equilibrium, we have

Arr ¼ 0; ma
jðrrÞ ¼ m

b

jðrrÞ (2.117)

The range of the state parameters where the maintenance of the phase equilibrium is possible is

determined, depending on the choice of variables, by Eqs. (2.114) and (2.115) which, in this case (nj = 1,

ni = 0, S̄ ¼ s j, V̄ ¼ v j), are of the form

D
@S

@NjðrrÞ
dT ¼ �

X3

l;m¼1

Dðv jllmrr delmÞ; (2.118)
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Ds j dT ¼ �Dv j dErr þ
X3

l;m¼1

D½v jðElm � dlmErrÞdelm�; (2.119)

where D now symbolizes the difference in a quantity for phases a and b. In particular, Dsj and Dv j are the

molar entropy and molar volume effects for the reverse phase transition b! a:

Ds j� saj � sbj ; Dv j� vaj � vbj (2.120)

(molar and partial molar quantities coincide for one-component phases). Eq. (2.118) is convenient when

polymorphous modifications are compared at the same state of strain. If, however, the comparison of

polymorphous modifications is made at given stresses, Eq. (2.119) turns to be more convenient. At the

equilibrium state diagram, both the equations specify a hypersurface separating the regions of existence

of phases a and b (the coexistence of the two phases is possible on the hypersurface itself).

Eq. (2.119) can be obtained directly from Gibbs’ equilibrium condition, Eq. (2.25), for a stressed solid

driven in contact with a liquid along a certain direction [29]. At an isotropic strain due to hydrostatic

pressure p (Elm = dlmErr = �dlmp), Eq. (2.119) is reduced to the known Clapeyron–Clausius equation

dT

d p
¼ Dv j

Ds j
: (2.121)

The equation of the same simple form is obtained from (2.119) in the case of one-sided compression (in

the theory of elasticity, this term designates longitudinal compression of a column under the condition

that its transverse dimensions cannot change):

@T

@Err

� �
elm 6¼ rr

¼ �Dv j

Ds j
: (2.122)

As it was correctly noted in Ref. [29], the same equation is also obtained for any small strain if the initial

state of a solid is isotropic, i.e. Elm = dlmErr (Kumazava has derived a similar equation for the one-sided

compression of a specimen under the condition of uniform hydrostatic pressure [34,35]). As for

Eq. (2.122), it is not related to the vicinity of an isotropic state.

It is seen from comparison of (2.121) and (2.122) that the dependence of the temperature of

polymorphous transformation on stress is the same for all-sided and one-sided compression. The sign

of the entropy effect Dsj is the same for all substances since the molar entropy of the high temperature

phase is always larger than the molar entropy of the low temperature phase. However, the sign of the

volume effect Dv j can be any. Most typically, the molar volume of the high temperature phase is also

larger than the molar volume of the low temperature phase. Then the signs of the volume and entropy

effects of the phase transformation coincide, and the temperature of polymorphous transformation

decreases with increasing stress, as is shown in Fig. 3 (the character of the dependence will be opposite

when stress is replaced by pressure). However, there exist also abnormal cases of polymorphous

transformations (we can point out red and yellow modifications of PbO or monoclinic and tetragonal

forms of ZrO2 as an example) when the high temperature phase turns to be denser than the low

temperature phase, so that the derivative dT/dErr becomes positive (and the pressure derivative

negative).
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Eq. (2.119) can also describe the case of simple stretching (or compression) of a column when the

lateral stresses (but not strain) are constant, as it happens, for example, at stretching a column in the open

air. The matter is that any diagonal summand of the sum standing in (2.119) disappears not only at

constant strain, but also at constant stress if it is equal to Err. We first consider the case when stretching is

carried out along a certain direction (direction 1) parallel to the interface whereas the stress on the

interface Err is kept constant. If the column consists of two phases, for the phases will be subjected to the

action of the variable stress E11 and of the constant stresses E22 = E33 � Err (herewith El 6¼ m = 0). Then

Eq. (2.119) takes the form

Ds j dT ¼ ðE11 � ErrÞDðv j de11Þ (2.123)

and describes the behavior of the temperature of a phase transition in a mechanically anisotropic system.

Note that passing to an isotropic system is impossible in Eq. (2.123) which then simply loses its sense.

Passing to the independent variable E11 and dividing both the parts of Eq. (2.123) by dE11, we arrive at the

relationship

dT

dE11

� �
Elm 6¼ 11

¼ E11 � Err

Ds j
D v j

de11

dE11

� �
: (2.124)

The derivative de11/dE11 may be represented as

de11

dE11

¼ @e11

@E11

� �
T ;Elm 6¼E11

þ @e11

@T

� �
Ê

dT

dE11

� 1

l1111

þ u11

dT

dE11

; (2.125)

where l1111 and u11 are Young’s modulus and the thermal strain coefficient (the component of tensor

(2.72) in direction 1), respectively. Putting Eq. (2.125) in Eq. (2.124) yields

dT

dE11

� �
Elm 6¼ 11

¼ ðE11 � ErrÞ
Ds j

D
v j

l1111

� �
= 1 � E11 � Err

Ds j
Dðv ju11Þ

� �
: (2.126)

Eq. (2.126) describes the dependence of the phase transition temperature on the excess stress E11 � Err

applied in parallel to the interface. In the initial isotropic state, the derivative dT/dE11 is zero, but becomes

more and more appreciable as the excess stress increases. Until the excess stress is small, the denominator

of (2.126) is scarcely different from unity. So one may set

dT

dE11

� �
Elm 6¼ 11

� ðE11 � ErrÞ
Ds j

D
v j

l1111

� �
; (2.127)
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from where it is seen that the phase transition temperature increases or decreases proportionally the

square of the stress applied. If, however, the stress is so large that, inversely, one may neglect unity in the

denominator of (2.126), Eq. (2.126) changes to

dT

dE11

� �
Elm 6¼ 11

� �Dðv j=l1111Þ
Dðv ju11Þ

: (2.128)

The dependence of Ton E11 given by Eq. (2.128) is practically rectilinear. Especially demonstrative is the

case when the difference in the molar volume of polymorphous modifications is negligible. Then

Eq. (2.128) becomes

dT

dE11

� �
Elm 6¼ 11

� �Dð1=l1111Þ
Du11

: (2.129)

Such a case should be scarcely considered as rare since polymorphous transformation is a structural one

with a more important change in the body shape than in its volume (which is usually rather small). To

speak about anisotropic solids, we can easily imagine the case of the first-order phase transition when the

molar volumes are strictly the same, whereas some components of the strain tensor have a break, let alone

such structural characteristics as Young’s modulus and the thermal strain coefficient.

Eq. (2.124) can be represented in one more very compact form. Since Eq. (2.124) actually describes

the dependence of the phase transitions temperature on the excess stress E11 � Err, the isotropic state at

E11 = E22 = E33 may be conditionally taken for the initial state of zero strain. Although the derivative

de11/dE11 is here not isothermal, one may assume (because of the smallness of strain) a linear dependence

between e11 and E11 � Err. Then, by putting the difference E11 � Err under the symbol D, we can write

Eq. (2.124) as

dT

dE11

� �
Elm 6¼ 11

¼ Dðv je11Þ
Ds j

: (2.130)

We now consider the case when the interface is perpendicular to the direction of uniaxial dilatation.

Then E33 � Err is the variable stress applied to both the phases simultaneously at the constancy of all

other stresses (E11 = E22 � Ell, El 6¼m = 0). From Eq. (2.119) we have

dT

dErr

� �
Elm 6¼ rr

¼ �Dv j

Ds j
� Err � Ell

Ds j

X2

l¼1

D v j
dell
dErr

� �
: (2.131)

By analogy with Eq. (2.125), one may use the representation

dell
dErr

¼ @ell
@Err

� �
T ;Elm 6¼Err

þ @ell
@T

� �
Ê

dT

dErr
� � klr

lrrrr
þ ull

dT

dErr
; (2.132)

where klr is usual (three-dimensional) Poisson’s ratio, lrrrr is Young’s modulus for the r-direction, ull is

the thermal strain coefficient (the component of the tensor shown in Eq. (2.72)) in the l-direction. Putting
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Eq. (2.132) in Eq. (2.131) leads to the relationship

dT

dErr

� �
Elm 6¼ rr

¼ �Dv j

Ds j
þ Err � Ell

Ds j
D

v j

lrrrr

X2

l¼1

klr

 !" #
= 1 þ Err � Ell

Ds j
D v j

X2

l¼1

ull

 !" #
(2.133)

exhibiting how the excess uniaxial dilatation in the direction perpendicular to the interface, influences the

phase transitions temperature. In the initial isotropic state, the value of the derivative dT/dErr exactly

corresponds to the Clapeyron–Clausius equation (and can be small if the molar volumes of polymorphous

modifications are close). In the region of small excess stresses, Eq. (2.133) can be written as

dT

dErr

� �
Elm 6¼ rr

� �Dv j

Ds j
þ Err � Ell

Ds j
D

v j

lrrrr

X2

l¼1

klr

 !
; (2.134)

from where it is seen that the dependence is still practically linear (unless the volume effect of the

polymorphous transformation is too small). In the limit of large excess stresses, Eq. (2.133) is reduced to

dT

dErr

� �
Elm 6¼ rr

� D
v j

lrrrr

X2

l¼1

klr

 !
=D v j

X2

l¼1

ull

 !
(2.135)

and becomes still simpler when the molar volumes of the polymorphous modifications are close to each

other:

dT

dErr

� �
Elm 6¼ rr

� D
1

lrrrr

X2

l¼1

klr

 !
=D

X2

l¼1

ull

 !
: (2.136)

Aside from the detailed representation of Eq. (2.131) in the form of Eq. (2.133), we can (using the

same arguments as at passing from (2.124) to (2.130)) reduce Eq. (2.131) to the compact form

dT

dErr

� �
Elm 6¼ rr

¼ �Dv j

Ds j
� 1

Ds j
D v j

X2

l¼1

ell

 !
; (2.137)

where the strain tensor components ell includes not only the (negative) deformations of transverse

compression reckoned from a mechanically isotropic state, but also thermal effects. The first term on the

right-hand side of Eq. (2.137) corresponds to the Clapeyron–Clausius equation. The second term plays

the role of a correction whose value depends on the elastic and thermal properties of coexisting phases, as

well as on the degree of deviation from the mechanically isotropic state (for the isotropic state itself,

ell = 0, and Eq. (2.137) strictly changes to the Clapeyron–Clausius equation).

From Eq. (2.119), the relationship also follows

@T

@elm

� �
Err ;est 6¼ rr

st 6¼ lm

¼ � 2v jDElm

Ds j
(2.138)

describing the influence of the shear strain on the phase transitions temperature. Here the coefficient 2

appears because of the symmetry of the strain and stress tensors (elm = eml, Elm = Eml). In addition, the

shear strain does not influence the molar volume v j so that v j may be factored outside the difference sign.
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We have shown above how phase transitions in non-isotropically stressed solids should be considered

on the basis of the chemical potential tensor and accounting for the interface orientation [5]. In the old

literature the notion of chemical potential was not used at all, and the problem was solved within the

frames of the truncated thermodynamics of deformation (see, e.g. [3]). Instead of the equality of the

normal-to-interface components of chemical potential, it was postulated the equality of molar Gibbs

energy or the function F�F � V0

P
l;m Elmelm where V0 is a certain constant volume in the strainless

state usually introduced when using the Piola stress tensor. In this way, Coe and Paterson [36] derived the

equation (in our notation)

dT

dElm

� �
Est 6¼ lm

¼ � v j0 Delm
Ds j

; (2.139)

where v j0 is the molar volume value for a standard state (from which strain is reckoned) assumed to be the

same for both polymorphous modifications. This means that, at least for one of the phases, the standard

state possesses appreciable stresses which, in addition, are not given uniquely (same volume can results

from various combinations of stresses). Therefore, the final strains present in Eq. (2.139) are, at l = m, of

another (and less clear) meaning than strains given in Eqs. (2.130) and (2.137). Coe and Paterson [36]

passed from their Eq. (2.139) to the Clapeyron–Clausius equation by setting l = m and summing up the

right-hand side over all directions. Herewith the use of Eq. (2.11) is needed, but this standard relationship

of theory of elasticity evidently implies all ell to refer to the same state of strain, i.e. all ell are

simultaneously obtained from the same (one) experiment. However, the right-hand sides of Eq. (2.139)

refer to simple dilatations in different directions (i.e. to different experiments), so the strains standing

there do not coincide generally with their values at the all-sided tension of the same specimen.

2.5.2. Second-order phase transitions

Polymorphous modifications cannot coexist if the polymorphous transformation a! b is a second-

order phase transition. There is no interface in this case and no direction selected in space. However, the

boundary between the regions of phasesa and b in the above mentioned state diagram, does still exist as a

hypersurface of six dimensions. The difference is that the hypersurface corresponded to the phase

equilibrium a–b in the case of the first-order phase transition, but now simply separates two one-phase

regions. In the case of a first-order phase transition, thermodynamic potentials and their first derivatives

do not change at the transition point and belong to both the phases simultaneously. Therefore, one can say

that Eq. (2.117) (for an arbitrary direction) are still valid, but now as identities.

To derive the phase boundary equation, let us use the following procedure. We select points a and b

infinitesimally close to each other on the phase-boundary hypersurface in the state diagram (as an

example, the points are depicted in Fig. 3 as their projections on the Err � T coordinate plane) and

consider a change in a certain property when moving from one point to the other. As such a property, we

first choose the component, for an arbitrary direction, mj(rr) of the chemical potential tensor. Its change,

dmj(rr), at passing from point a to point b can be calculated in various ways by subsequent changing the

state parameters. As it is seen from Fig. 3, the path from a to b goes through the region of phase a if we

first reduce temperature and then increase stress Err, or, the reverse, through the region of phase b if we

first increase stress and then reduce temperature. Involving also the rest variables, we may say that there

are always two routes from point a to point b: one through the region of phase a and the other through the

region of phase b. We designate the quantity dmj(rr) calculated by using the first route and the second
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route as dma
jðrrÞ and dm

b

jðrrÞ, respectively. Since the result of calculation must be independent of the route,

we have

dma
jðrrÞ ¼ dm

b

jðrrÞ: (2.140)

If we now put the expression for the chemical potential of an immobile species given by Eq. (2.90) or

(2.97) into Eq. (2.140), we formally obtain again Eq. (2.118) or (2.119), respectively (to speak about a

one-component system). However, the first derivatives of the molar Gibbs energy (chemical potentials

belong to that category in this case) exhibit no jump at passing from one phase to the other in the case of a

second-order phase transition (DS = 0, DV = 0, etc.). Therefore, the resultant equations degenerate into

identities, and nothing can be calculated with the aid of these equations.

Phase transitions of second-order differ from phase transitions of first-order in that not the first, but the

second derivatives of thermodynamic potentials undergo a jump at changing from one phase to another.

Therefore, if we wish to derive the equation of the boundary between the phase regions a and b in the

state diagram for a second-order phase transition, we have, turning to Fig. 3, to consider the variation,

along the phase boundary, of such a property which itself is the first derivative of a thermodynamic

potential (of free energy or Gibbs energy in the case under consideration). The standard procedure for

isotropic systems is the use of entropy and volume. Let us see what this give for anisotropic bodies.

Taking the molar entropy of an immobile species sj for the property required and repeating all the

above reasoning related to Fig. 3, we arrive at the condition

dsaj ¼ dsbj ; (2.141)

which is evident to be true at any choice of variables. Choosing first temperature and the strain tensor

components as variables, we have the expression for the perfect differential of molar entropy in a closed

system

ds j ¼
@s j
@T

dT þ
X3

l;m¼1

@s j
@elm

delm ¼ cê
T

dT � v j

X3

l;m¼1

hlm delm: (2.142)

In the second form of Eq. (2.142), Eq. (2.70) has been used and two quantities have been introduced: heat

capacity at constant configuration of the system cê (an analogue of specific heat at constant volume in

isotropic systems) and the thermal stress coefficient hlm (showing what additional stress in a direction

chosen arises at changing temperature by one degree in a closed system of a fixed configuration). Putting

(2.142) in (2.141) leads to the equation

D
cê
T

dT ¼
X3

l;m¼1

Dðv jhlmÞdelm; (2.143)

where D symbolizes the difference of values of a quantity in phases a and b. Eq. (2.143) in other terms

describes the same hypersurface as that described by Eq. (2.118), but now for the case of a second-order

phase transition.

Choosing now temperature, the normal stress in the r-direction and the strain tensor components in the

rest directions as variables, we write the expression for the perfect differential of molar entropy in a
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closed system as

ds j ¼
@s j
@T

dT þ @s j
@Err

dErr þ
X3

l;m¼1
ðlm 6¼ rrÞ

@s j
@elm

delm

¼
cErr ;elm 6¼ rr

T
dT þ v jurr dErr � v j

X3

l;m¼1
ðlm 6¼ rrÞ

½urrðElm � dlmErrÞ þ hlmðrrÞ�delm: (2.144)

In the second form of Eq. (2.144), Eqs. (2.79) and (2.80) have been used containing the quantities hlm(rr)

(the thermal stress coefficient under the condition that the normal stress in the r-direction is kept constant)

and urr (the thermal linear dilatation coefficient in the r-direction under the condition that all other

direction are blocked). Besides, it has been introduced the specific heat cErr ;elm 6¼ rr
at constant pressure in

one direction and constant system boundaries in all other directions. The substitution of (2.144) in (2.141)

leads to the equation

D
cErr ;elm 6¼ rr

T
dT ¼ �Dðv jurrÞdErr þ

X3

l;m¼1
ðlm 6¼ rrÞ

D½v jurrðElm � dlmErrÞ þ v jhlmðrrÞ�delm (2.145)

that describes the phase boundary as a hypersurface in the state diagram in the case of a second-order

phase transition.

An interesting result is obtained when molar entropy is replaced by molar volume. Then, instead of

Eq. (2.141), we have the initial equality

dvaj ¼ dvbj : (2.146)

The choice of temperature and the strain tensor components as the variables of the phase state, as in

Eq. (2.142), is of no interest in this case. The matter is that the variation of molar volume with temperature

becomes impossible at the constancy of the configuration of a closed system (elm = 0), so that the

expression for the perfect differential of molar volume in the closed system will not contain the

temperature differential needed. Therefore, we use the set of variables standing in Eq. (2.144) and

implying the presence of a free direction. We write the expression for the perfect differential of molar

volume in a closed system as

dv j ¼
@v j

@T
dT þ @v j

@Err
dErr þ

X3

l;m¼1
ðlm 6¼ rrÞ

@v j

@elm
delm: (2.147)

Using Eq. (2.76), we express the first derivative on the right-hand side of (2.147) through the thermal

linear dilatation coefficient in the r-direction urr. We express the next derivative through the one-sided

isothermal compressibility xrr in the same direction given by Eq. (2.78). The last term in Eq. (2.147) is

transformed with the account of Eq. (2.82) introducing two-dimensional Poisson’s ratio krl in the rl-plane

(dilatation in the r-direction is accompanied by lateral compression in the l-direction at the constancy of
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all other components of the strain tensor). The resultant form of Eq. (2.147) is

dv j ¼ v jurr dT þ v jxrr dErr þ v j

X
l 6¼ r

ð1 � krlÞdell (2.148)

or

d ln v j ¼ urr dT þ xrr dErr þ
X
l 6¼ r

ð1 � krlÞdell: (2.149)

We now may substitute (2.148) in (2.146). However, it will be simpler if, instead of considering the

variation of molar volume, we now consider the variation of the logarithm of molar volume along the

phase boundary in the state diagram. Instead of (2.146), we write

d ln vaj ¼ d ln vbj : (2.150)

and substitute (2.149) in (2.150). This yields the phase boundary equation at a second-order phase

transition

Durr dT ¼ �Dxrr dErr �
X
l 6¼ r

Dkrl dell: (2.151)

Eq. (2.151) is essentially simpler and, simultaneously, poorer than Eq. (2.144) since Eq. (2.151) contains

only the diagonal components of the strain tensor and only for two directions (different from r).

As was already noted in the preceding section for the case of anisotropic bodies, the volume change

can be continuous even for a first-order phase transition. More generally, the observation of only volume

behavior in phase transitions is quite insufficient for anisotropic bodies: it is necessary to control the

whole strain tensor. In the case of a second-order phase transition, the strain tensor ê itself is continuous at

intersecting the phase boundary in the state diagram (this means that all its components elm are

continuous), but some of its derivatives undergo discontinuity. In place of Eq. (2.146), we now write

dealm ¼ deblm ðl;m ¼ 1�3Þ (2.152)

and choose temperature T and the stress tensor components Est as independent variables:

delm ¼ @elm
@T

� �
Ê

dT þ
X3

l;m¼1

@elm
@Est

� �
T ;Elm 6¼ st

dEst � ulm dT þ
X3

l;m¼1

dEst

lstlm
(2.153)

(here ulm is the thermal strain coefficient and lstlm is the elasticity modulus at given stresses). The

substitution of (2.153) in (2.152) leads to the relationship

Dulm dT þ
X3

l;m¼1

D
1

lstlm

� �
dEst ¼ 0 ðl;m ¼ 1�3Þ (2.154)

which describes the influence of stresses on the phase transition temperature.

We now apply the above equations to the examples considered in the preceding section for first-order

phase transitions. In the case of one-sided stretching (in the r-direction), according to Eqs. (2.145) and
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(2.151), the variation of the polymorphous transformation temperature is given by the relationship

@T

@Err

� �
elm 6¼ rr

¼ � Dðv jurrÞ
DðcErr ;elm 6¼ rr

=TÞ ¼ �Dxrr

Durr
: (2.155)

If, however, the matter has been placed inside a tube with open ends at constant external pressure

(Err = constant), the equations obtained yield

@T

@ell

� �
Err ;est 6¼ rr

¼
D½v jurrðEll � ErrÞ þ v jhllðrrÞ�

DðcErr ;elm 6¼ rr
=TÞ ¼ �Dkrl

Durr
(2.156)

for the one-sided transverse compression. If a specimen is subjected to shear strain, the corresponding

equation can be obtained from Eq. (2.145):

@T

@elm

� �
Err ;est 6¼ rr

st 6¼ lm

¼
D½v jurrðElm � dlmErrÞ þ v jhlmðrrÞ�

DðcErr ;elm 6¼ rr
=TÞ : (2.157)

We now turn to the case of simple stretching. Eq. (2.151) originating from the continuity of the volume

logarithm yields

dT

dErr

� �
Elm 6¼ rr

¼ �Dxrr

Durr
� 1

Durr

X
l 6¼ r

Dkrl
dell
dErr

: (2.158)

Eq. (2.154) produces a still simpler result. Writing Eq. (2.154) for the condition of the continuity of the

strain tensor component err at fixing all the stress tensor components but Err, we have

dT

dErr

� �
Elm 6¼ rr

¼ �Dð1=lrrrrÞ
Durr

; (2.159)

where lrrrr is Young’s modulus in the r-direction. Eq. (2.159) gives evidence, first, of the linear character

of the dependence of the phase transitions temperature on the one-sided stress value and, second, of that

the slope of the line depicting this dependence can be different for different directions for an anisotropic

body. In the case of a second-order phase transition, it is canceled the problem of mutual orientation of the

physical phase boundary and the direction of a stress applied. Therefore, the phase transitions

temperature may be assumed to be a function of the principal stresses E1, E2, and E3 only:

dT ¼ @T

@E1

dE1 þ
@T

@E2

dE2 þ
@T

@E3

dE3: (2.160)

Passing in (2.160) to the isotropic case dE1 = dE2 = dE3 � dE, we obtain the relationship

dT

dE
¼ @T

@E1

þ @T

@E2

þ @T

@E3

(2.161)

that was confirmed experimentally by Coe and Paterson [36] who studied the influence of the one-sided

stress on the temperature of transformation of a-quartz to b-quartz (all the four derivatives in (2.161)

were determined independently). They obtained a pure linear dependence of the transition temperature

on stress. One can say more. Since, according to their data, a-quartz possesses a higher linear
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compressibility and a higher linear thermal dilatation coefficient as compared with b-quartz, Eq. (2.159)

also correctly predicts the sign of the linear dependence (the phase transition temperature increased when

applying one-sided compression in experiment). The above facts incline to the known interpretation of

the a–b-transformation as a second-order phase transition, although Coe and Paterson eventually

adopted the variant of a coherent first-order phase transition.

2.6. Surface mechanochemistry

An interface is always subjected to the field of adjacent phases. Therefore, the regularities typical for

systems in external fields, nonuniformity and anisotropy, are manifested in interfacial layers. The

interfacial nonuniformity develops at a distance of order of molecular dimensions, which gives evidence

of huge gradients of density or concentration. At the same time, the effective thickness of interfacial

layers is small and seldom exceeds molecular dimensions by the order of magnitude (far from the critical

point). The appearance of the strong nonuniformity in one direction itself leads to the anisotropy of

physicochemical properties of an interface. Even for liquids, the surface layer is distinct from the bulk

phase by the presence of anisotropy of the pressure tensor (this means that the Pascal law fails for the

surface layer of a liquid). In solids, the anisotropy of chemical potential is complicated by its

nonuniformity (even at equilibrium), which makes especially important the use of the above local

thermodynamic equations. Of course, the application of the thermodynamic relationships derived in this

section to the interfacial region is an approximation since the behavior of a strongly nonuniform matter is

determined not only by local properties, but also by their gradients of all orders. Selecting a certain layer

of an interface (like a surface monolayer) and averaging properties along the gradient direction (for the

other directions, an interface is locally uniform in reality), we create the basis for the application of the

local thermodynamic equations.

The role of surface phenomena in the processes of deformation is small and is usually neglected in

continuum mechanics. However, the situation is quite opposite in the mechanochemistry of solids. As we

already noted, a solid typically reacts with its surface. Therefore, just the state of matter at the surface is

determinant for solid reactions including heterogeneous catalysis, and mainly the solid surface mono-

layer is chemically active. Correspondingly, not the whole surface tension (which is an excess surface

stress integrated over the interface thickness), but the real surface stress in the monolayer region is the

main mechanical parameter in mechanochemistry. The origin of surface stress is the same as that of

surface tension. The difference between the local surface stress in a monolayer and the corresponding

bulk stress multiplied by the monolayer thickness can be called the monolayer tension and is a part of the

whole surface tension. Since a surface monolayer yields the main contribution to surface tension, the

monolayer tension can be close to surface tension and, if measured experimentally, can be used for

finding an approximate value of surface tension. This was described earlier [1] and is especially

important in view of the opinion that excess surface stress (surface tension) cannot be determined

experimentally [37]. For this reason it is worthy to return to this problem in the light of the above

thermodynamic theory.

The fact itself of the natural existence of surface stress is not provided in the theory of elasticity [3] that

banks upon the fact that there are no internal stresses in the initial state when external forces do not act on

a solid. This is not the case in reality. Stress is always present in the surface layer and changes (in any

way) in the course of mechanical treatment. In the above equations, this circumstance has already been

taken into account in that respect that we never used the prehistory of a body and never used the strain
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itself in the equations, but used only the differential of strain. In other words, all the relationships have

been formulated in terms of a given strain and can be used regardless of the absence or presence of an

initial stress. Meanwhile, the presence of an initial surface stress results in the mechanical effect of the

strain sign, which was unknown in the classical theory of elasticity and surface thermodynamics. The

theory of this phenomenon can easily be formulated on the ground of the above thermodynamic

relationships [4].

2.6.1. Theory of the mechanochemical effect of the strain sign

Let the solid surface monolayer participate in an isothermal physicochemical process (e.g. it can be a

chemical reaction) with a monomolecular mechanism, so that its chemical potential enters the process

affinity with the unit coefficient (otherwise we should simply multiply the chemical potential by the

corresponding stoichiometric coefficient). We consider the typical situation when the process develops

along the normal to the surface. Then only normal components of affinity and chemical potentials are in

action. For the sake of simplicity, we assume all other participants of the process to be in a fluid state and

have their chemical potentials kept constant (e.g. with the aid of a large fluid mass). According to

Eq. (2.107), we have, in this particular situation,

dAnn ¼ dm0
jðnnÞ: (2.162)

To establish the strain sign effect, we have to compare the affinities of the stretched and compressed states

with exactly same absolute values of strain. To speak about experiment, a too great force is needed to

produce an appreciable effect by direct stretching or compressing a solid [38]. However, even slight

bending a solid plate creates big stresses, opposite in sign, on the plate sides. It is also important in this

experimental scheme that the additional stresses and strains arise just in the direction where surface stress

acts. For this reason, it is convenient to apply the consideration to an elastically bent plate. Denoting

DAnn the affinity difference between the convex and concave sides of the plate and accounting for

Eq. (2.162), we have

DAnn ¼ Dm0
jðnnÞ: (2.163)

According to Eq. (2.41), the quantity m0
jðnnÞ itself is given by the expression (in the absence of mobile

species in the solid phase)

m0
jðnnÞ ¼ v jð f � EnnÞ: (2.164)

Because of the constancy of temperature and chemical potentials, the pressure in the adjacent fluid phase

and, therefore, Enn are constant too. A change in the molar volume v j is negligible due to low

compressibility of a solid, and, hence, the behavior of m0
jðnnÞ is practically determined only by the free

energy density f .

The problem of a bent plate was thoroughly analyzed in the classical theory of elasticity (see, e.g. [3,p.

60]), and we begin with reviewing the corresponding results. At a small bend of an originally flat plate, its

convex side undergoes one-direction stretching and its concave side undergoes axial compression. We

assume this to occur along the x(x1)-axis, while the z(x3)-axis is directed along the normal to the surface

(the origin of coordinates is positioned at the plate center, Fig. 4). In the case of an isotropic material, the

theory of elasticity yields the following expression for the increment of the local density of free energy of
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the bent plate (referred to the not distorted state):

f ðx; zÞ � f0 ¼ ð@2z=@x2Þ2Yz2

2ð1 � k2Þ > 0; (2.165)

where f0 is the free energy density for the plate in the not distorted state, z the displacement of the points

of the middle plane of the plate along the z-axis at bending the plate (Fig. 4), Y the Young’s modulus, and

k is the Poisson’s ratio. According to (2.165), the free energy density increases with the plate bend. This

means, in accordance with (2.164), that the chemical potential of the plate matter increases and, hence,

the chemical affinity of the process under consideration increases too. The opposite sides of the plate

differ in the sign of the z-coordinate. However, z stands only in the second power in Eq. (2.165). Then it

follows at once from Eq. (2.165) that the free energy density is the same on the two sides of the bent plate,

i.e. Df = 0. Turning now to Eq. (2.163), we obtain Dm0
jðnnÞ ¼ DAnn ¼ 0 in the same approximation

(accounting for the local density change in the process of deformation of the plate leads only to a small

correction, sometimes by two orders of magnitude smaller than the effect observed in experiment [39], so

it makes no sense to discuss it here).

Thus, one can say that the classical theory of elasticity predicts the mechanochemical effect of bending

(the process rate increases as the plate is bent), but denies the influence of the strain sign on the effect.

This result for incompressible Hookean bodies is a consequence of the fact that the free energy change at

axial stretching and compression (to the same extent) is the same not only in sign (free energy increases in

both the cases) but also in value. As we already noted above, this is true only under condition with no

stresses in the initial state of a body. The existence of surface stress changes the entire picture and requires

another approach, which can be based on the relationships of Section 2.3.5.

We start with Eq. (2.97) that, at constant T, Enn, and with Ni = 0 and the diagonal form of the stress

tensor, becomes

dm0
jðnnÞ ¼ v j½ðE11 � EnnÞde11 þ ðE22 � EnnÞde22� (2.166)

for each of the plate sides. Using Poisson’s ratio k21 = �de22/de11, we can rewrite (2.166) as

dm0
jðnnÞ

de11

¼ v j½ðE11 � EnnÞ � k21ðE22 � EnnÞ�: (2.167)

We shall consider the initial configuration of a not yet bent plate (but with surface stress) in contact

with an adjacent fluid phase as a not distorted configuration with respect to which the strain is measured.

Then each of stresses E11 and E22 can be decomposed into the initial stress and the acquired stress

according to the equation

Ell ¼ Ell0 þ lll11e11 ðl ¼ 1; 2Þ; (2.168)
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where the quantity related to the initial state is marked with zero and the acquired stress is expressed

through the elasticity modulus and strain (which, naturally, is assumed to be small). Putting (2.168) in

(2.167) leads to the expression

dm0
jð33Þ

de11

¼ v jðE0 þ le11Þ; (2.169)

where E0 �E110 � Enn � k21ðE220 � EnnÞ and l� l1111 þ k21l2211. The integration of Eq. (2.169)

yields

m0
jðnnÞ ¼ m0

jðnnÞ0 þ v jE0e11 þ v jle
2
11: (2.170)

Stress E0 is assumed to be zero in the classical theory of elasticity. So, if we followed the theory, we would

investigate only the quadratic term in the expansion of the chemical potential, whereas there is a more

important (at small deformation) linear term in reality. Thus, it may be said that not we are finding a

correction to the classical theory of elasticity, but rather the classical theory of elasticity gives a

correction to the effect under investigation.

Let us consider the linear term in (2.170) in detail. Not to complicate the problem with the additional

factor of anisotropy, we assume the plate material to be isotropic (E110 = E220, k21 = k) and write

Eq. (2.170) as

m0
jðnnÞ ¼ m0

jðnnÞ0 þ v jð1 � kÞðE110 � EnnÞe11 þ v jle
2
11: (2.171)

Since the liquid, with pressure p = �Enn, surrounds the plate all round, the stress tensor in the plate bulk

can be considered to be isotropic and to have only one component Enn. In other words, E110 = Enn in the

bulk. This means that the difference E110 � Enn is the local excess stress in the surface zone (typically a

monolayer) participating in the process under consideration. Let us refer Eq. (2.171) to the convex

(stretched) side of the plate. Then, as is seen from the contribution of the linear term in Eq. (2.171), the

chemical potential increases or decreases as the plate is bent if the excess surface stress is positive or

negative, respectively. According to (2.162), the affinity behaves similarly. The concave side of the plate

differs from the convex one by the strain sign. Therefore, if the strain value e11 for the convex side is also

used for the concave side, we have

m0
jðnnÞ ¼ m0

jðnnÞ0 � v jð1 � kÞðE110 � EnnÞe11 þ v jle
2
11 (2.172)

for the concave side in place of Eq. (2.171). As is seen from Eq. (2.172), the effect produced by the

linear term for the concave side, is of the opposite sign: as the plate is bent, the chemical potential

(and, therefore, the chemical affinity of dissolution) increases at a negative value and decreases at a

positive value of the excess surface stress. Subtracting (2.172) from (2.171) and accounting for

(2.163), we obtain

Dm0
jð33Þ ¼ 2v jE0e11 ¼ 2v jð1 � kÞðE110 � E33Þe11: (2.173)

In the classical theory of elasticity E0 = 0, and the effect described by Eq. (2.173) is absent. In reality, as

we see, the mechanochemical effect of the strain sign does exist and depends on the sign of excess surface

stress. The chemical potential (and affinity) on the convex side is higher than on the concave side at a
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positive value of excess surface stress. The reverse, the chemical potential (and affinity) on the convex

side is lower than on the concave side at a negative value of excess surface stress.

2.6.2. Experimental discovery of the mechanochemical effect of the strain sign and measuring

absolute surface stress

The above mechanochemical effects have already been discovered in experiment. The first observa-

tion of the strain sign effect was related to the rate of dissolution of a bent monocrystalline (cleaved along

the (1 0 0) crystalline plane) plate of KCl in a water stream [39]. The dissolution rate was determined by

the visual microscopic examination of the movement of the crystal boundary surface. Both the convex

and concave sides increased their dissolution rates with the additional surface stress applied. However,

the concave side dissolved somewhat faster, and this gave evidence of the negative sign of the excess

surface stress. It was also possible to find the equilibrium (when the boundary surface was at rest)

solubility separately for the opposite plate sides, and the solubility was again larger for the concave side.

With such data, the chemical potential difference Dm0
jðnnÞ in Eq. (2.173) can be determined as

Dm0
jðnnÞ ¼ RT Dlnðc00j f 00j Þ; (2.174)

where c00j and f 00j are the equilibrium concentration (solubility) and the activity coefficient (the mean

activity coefficient to mention electrolytes) of the matter of the solid in solution, D symbolizes the

difference between quantities related to the convex and concave sides of the plate. Putting (2.174) in

(2.173) leads to the estimate

E110 � Enn ¼
RT Dlnðc00j f 00j Þ
2v jð1 � kÞe11

(2.175)

to yield the excess surface stress E110 � Enn � �4 � 105 Pa and the monolayer tension about �0.12 mN/

m, as was reported earlier [1].

Another confirmation of the strain sign effect was obtained from experiments on corrosion under

stress. It has been known for a long time that strain promotes corrosion (see the literature in Ref. [40]). It

was discovered recently that the corrosion rate is different for the convex and concave sides of a

polycrystalline carbon steel plate when it is bent and drawn in contact with hydrochloric or sulfuric acid

[41]. Since corrosion destroys a specimen and cracking occurs on the convex side, the mechanochemical

effect can scarcely be noticed in the case of a positive excess surface stress (when the convex side is to be

mechanochemically active). In many cases, however, the corrosion rate turned to be greater on the

concave side at the early stage of the process (the convex side will inevitably prevail sooner or later). This

indicates the strain sign effect and the existence of a negative value for the excess surface stress. Although

the possibility of the existence of negative surface tension was predicted long ago (see, for example, Refs.

[42,43]), the experimental confirmation of that fact failed for a long time. This is explained, in the first

turn, by the lack of direct methods for measuring the surface tension of solids. In the above examples, we

exhibited a reliable method for determining surface stress and negative values for the local tension at the

surface. However, we dealt with a solid/liquid interface and, moreover, with a solid electrolyte/

electrolyte solution interface with a powerful electrical double layer. If one imagines the surface

monolayer of a solid as a capacitor plate chiefly consisting of ions of one sign, a negative value for the

monolayer tension is seen rather expectable than surprising.

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239154



3. Development of principal notions of surface thermodynamics

Surface tension is the central quantity of Gibbs’ theory of capillarity. Promoting the simplification of

the apparatus of surface thermodynamics, surface tension itself meets difficulties in interpretation,

especially for curved interfaces. In this connection, Guggenheim wrote: ‘‘The more I read it, the less I

understood’’ [44]. The procedure of introducing surface tension as an excess quantity becomes

ambiguous for curved interfaces and leads to several definitions. Additional terminological problems

arise for solid surfaces. Even the trivial difference between surface tension and surface free energy forced

some authors (see, e.g. [37,45]) to avoid the term ‘‘surface tension’’. The use of ‘‘surface stress’’ instead

seems scarcely to be the way out. First, it is not quite exact. We considered above the local surface stress

in a given direction (1) along the surface as E11, the local excess surface stress as E11 � Ea
11, the tension of

an interface element of thickness d as ðE11 � Ea
11Þd, and surface tension as the sum of all the element

tensions across the interface. Second, even if we understand surface tension in the sense of surface stress

(which is correct in principle), the ambiguity of the surface tension definition remains for curved

interfaces. Surface tension is closely related to the dividing surface and to the condition of mechanical

equilibrium at an interface. We reviewed all these topics earlier [1], but we now have to say more. We will

show that surface thermodynamics developments become more understandable and still more elegant. In

this section, we follow the logic sequence: the introduction of a surface, the introduction of a surface

tension for the surface, the introduction of the equilibrium condition for the surface tension, and, finally,

fundamental equations.

3.1. Dividing surface

The concept of a dividing surface is a quintessence of Gibbs’ approach in surface thermodynamics. He

defined it in the following words: ‘‘. . . let us take some point in or very near to the physical surface of

discontinuity, and imagine a geometrical surface to pass through this point and all other points which are

similarly situated with respect to the condition of the adjacent matter. Let this geometrical surface be

called the dividing surface . . .’’ The ambiguity of this definition is obvious. To be more exact, this is not a

definition, but an intuitive conceptualization of a certain image. To make it a definition, it is necessary to

show how ‘‘the condition of the adjacent matter’’ should be formulated. Since only interfaces of simple

symmetry (flat, spherical, etc.) were under consideration for a long time, the dividing surface shape was

reasonably postulated, and only the choice of the dividing surface location was discussed. The common

practice rooted in Gibbs’ approach was reduced to shifting a dividing surface along its normal by a certain

distance. Mathematically, this means the conformal transformation of a dividing surface. The case of a

non-uniformly curved interface is much more complex. Although the above procedure is also applied to

non-uniformly curved interfaces, this operation looks proofless. Both the questions, how to find the

dividing surface shape and how to change its position, are raised again when passing to an interface of

arbitrary shape. The theory has been formulated recently [46–49] and is presented below.

‘‘The condition of the adjacent matter’’ is the ability of creating an external field influencing the

interface. External fields of another nature can also contribute to this field to make it more complex. As a

result, an interface becomes non-uniform and is characterized by the gradient lines of local properties,

first of all, density (concentration), which makes the interface shape visible. We take gradient lines for the

coordinate lines (let it be coordinate u3 corresponding to Cartesian z � x3) of a certain curvilinear

coordinate system including also coordinates u1 and u2 whose lines are perpendicular to the gradient lines
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at each point. Such a coordinate system forms the interface metrics (mathematically, the Riemann space

with curvature) characterized by the metric tensor gik relating coordinates ui to Cartesian coordinates xi as

gik �
@r

@ui
� @r
@uk

¼
X3

j¼1

@x j

@ui

@x j

@uk
ði; k ¼ 1�3Þ; (3.1)

where r is the radius vector of a point inside the interfacial region (vector @r/@ui is directed along the

coordinate line ui) and the dot designates the scalar product of vectors. As is seen from Eq. (3.1), the

metric tensor takes the diagonal form if the coordinate system u1, u2, u3 is orthogonal. Then only the

diagonal components gii are retained. Their square roots are also known as the Lame coefficients

hi ¼
@r

@ui
¼ ffiffiffiffiffi

gii
p

(3.2)

relating the coordinate line length li to the corresponding coordinate ui as

dli ¼ hi dui: (3.3)

We now can define a dividing surface as any coordinate surface u1, u2 of the above coordinate system.

In other words, we define a dividing surface as a coordinate surface, normal to the gradient lines, of an

orthogonal curvilinear coordinate system that diagonalizes the metric tensor of an interface. The dividing

surface equation is

u3 ¼ u30; (3.4)

where u30 is a constant whose value is arbitrary to some extent. A dividing surface itself possesses a

metrics formed by its coordinate lines, and obeys regularities of orthogonal curvilinear coordinates. First

of all, the coordinate lines coincide with the curvature lines according to Dupin’s theorem of differential

geometry. This means that the curvatures c1 � 1/R1 and c2 � 1/R2 of the dividing surface along the

coordinate lines 1 and 2 are the principal curvatures (correspondingly, R1 and R2 are the principal

curvature radii). As a consequence, the Rodrigues formula is valid

@n

@ui
¼ ci

@r

@ui
ði ¼ 1; 2Þ; (3.5)

where n is the unit normal to the dividing surface. Eq. (3.5) shows that the variation of the dividing

surface orientation at moving along its coordinate line is determined only by the curvature in a given

direction. Finally, the important geometrical relationship

@ ln li
@l3

¼ @ ln hi
h3@u3

¼ ci ði ¼ 1; 2Þ (3.6)

describes shifting a dividing surface element along the coordinate line 3.

The dividing surface definition given in Eq. (3.4) is not only strict as compared with Gibbs’ definition,

but also more general since it permits geometrical inconformity of different positions of a dividing

surface. Gibbs’ conformal approach is a particular case of the general definition and can be commented as

follows. Let the Lame coefficient have a value hi0 for a certain point of the dividing surface with u3 = u30.

After shifting the dividing surface by a small value Du3, the point chosen is displaced to a new position

with the Lame coefficient hi. Expanding hi in a power series of Du3 in the vicinity of hi0 with using
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Eq. (3.6), we have

hi
hi0

¼ 1 þ h30Du3

Ri0
þ 1

2
1 þ Ri0

h30

@ ln h3

@u3

����
0

� 1

h30

@Ri

@u3

����
0

� �
h30Du3

Ri0

� �2

þ � � � : (3.7)

It is seen from Eq. (3.7) that the expansion is actually carried out with respect to the dimensionless

parameter l/Ri0 where l � h30Du3. If the coordinate line of u3 is straight (h3 = h30 = 1, l = Du3,

Ri = Ri0 + l, @Ri/@l = 1), the third and all subsequent terms on the right-hand side of (3.7) become

zeros. Then Eq. (3.7) changes to

hi
hi0

¼ Ri

Ri0
¼ 1 þ l

Ri0
; (3.8)

where l means a shift of the dividing surface along the normal, i.e. the conformal mapping of the dividing

surface. As a strict relationship, Eq. (3.8) corresponds to a certain model of an interface. On the other

side, passing to a slightly curved interface, we may simply neglect the third and all subsequent terms on

the right-hand side of (3.7) since the expansion is carried out with respect to l/Ri0. Then we again arrive at

Eq. (3.8), but now as an approximation for a slightly curved interface of an arbitrary metrics. Fig. 5

illustrates the difference between Gibbs’ approach and the above general definition of a dividing surface.

Only for infinitesimal displacements, both the methods coincide: since we deal with an orthogonal

coordinate system, every shift along the coordinate line 3 primarily means the movement along the

normal to the dividing surface.

3.2. Excess surface stress (surface tension) for curved interfaces

In Section 2, we met the situation when only the excess surface stress in the surface monolayer was

important for solid state surface chemical reactions. In many other cases, however, the excess stress of the

whole interface resulting in surface tension is of practical importance. The surface tension definitions by

force and the force moment were reviewed earlier [1], but we now have to reformulate them in view of the

above general definition of a dividing surface.

We will also discuss the third-dimension aspect of surface tension as a reply to the most intriguing

question of the theory: is it always that surface tension is directed along the surface?
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3.2.1. Definition by moment

Let us consider the interface occupying the space between the coordinates ua3 and ub3 in phasesa andb,

respectively, and introduce a dividing surface defined by Eq. (3.4). Following the general rule of

composing Gibbs’ surface excess quantities, we have to integrate a local excess quantity over the non-

uniform interfacial region, the excess being estimated with respect to the reference system with

imaginarily uniform bulk phases up to the dividing surface. We choose the local stress tensor differences

Ê� Ê
a

and Ê� Ê
b

as excess quantities for the regions on the sides of phases a and b of the dividing

surface, respectively. With a closed move of the normal coordinate line, we select a narrow ‘‘flux tube’’

of the normal coordinate lines within Du1 and Du2, which intersects every u1, u2 coordinate surface over

the area A = h1h2Du1Du2 and intersects the dividing surface over the area A0 = h10h20Du1Du2. Referring

the integral to the dividing surface unit area, we obtain the expression for the surface excess stress tensor

ĝ as

ĝ ¼ 1

A0

Z u30

ua
3

ðÊ� Ê
aÞAh3 du3 þ

Z ub
3

u30

ðÊ� Ê
bÞAh3 du3

" #
: (3.9)

Using now the above expressions for A and A0 and letting Du1 and Du2 tend to zero, Eq. (3.9) acquires the

local form (for a given point on the dividing surface) [46]

ĝ ¼ 1

h10h20

Z u30

ua
3

ðÊ� Ê
aÞh1h2h3 du3 þ

Z u
b

3

u30

ðÊ� Ê
bÞh1h2h3 du3

" #
: (3.10)

Similarly to the bulk stress tensor (see Section 2), the surface excess stress tensor has three vector

components

g1 � i1 � ĝ; g2 � i2 � ĝ; g3 � i3 � ĝ; (3.11)

which are the scalar products of tensor ĝ and unit vectors i1 (along the coordinate line of u1), i2 (along the

coordinate line of u2), and i3 (normal to the dividing surface). The three vectors contain nine scalar

components of which the diagonal components

g ii ¼
1

h10h20

Z u30

ua
3

ðEii � Ea
iiÞh1h2h3 du3 þ

Z u
b

3

u30

ðEii � Eb
iiÞh1h2h3 du3

" #
ði ¼ 1�3Þ (3.12)

are the most important. The components g11 and g22 make the scalar surface tension g as

g ¼ g11 þ g22

2
; (3.13)

whereas g33 � gN is a specific quantity termed ‘‘transversal surface tension’’ and mirroring the third-

dimension aspect of surface tension.

In the particular case when either the normal coordinate is rectilinear (h3 = 1, u3 = l3) or the interface

thickness is small as compared with the principal curvature radii of the dividing surface, Eq. (3.8) holds

and permits writing Eq. (3.12) in the form (we now supply g11 and g22 with the moment superscript ‘‘m’’
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not to confuse them with similar quantities in the next section)

gm
11R10R20 ¼

Z 0

la
ðE11 � Ea

11ÞR1R2 dlþ
Z lb

0

ðE11 � Eb
11ÞR1R2 dl; (3.14)

gm
22R10R20 ¼

Z 0

la
ðE22 � Ea

22ÞR1R2 dlþ
Z lb

0

ðE22 � Eb
22ÞR1R2 dl; (3.15)

gNR10R20 ¼
Z 0

la
ðE33 � Ea

33ÞR1R2 dlþ
Z lb

0

ðE33 � Eb
33ÞR1R2 dl; (3.16)

where l � u3 � u30 = l3 � l30 is the distance reckoned from the dividing surface and varying between la

and lb within the interfacial zone. Multiplying Eq. (3.14) by the elementary angle

du2 ¼ dl2=R2 ¼ dl20=R20, we obtain

gm
11R10R20du2 ¼

Z 0

la
R1ðE11 � Ea

11ÞR2du2 dlþ
Z lb

0

R1ðE11 � Eb
11ÞR2du2 dl: (3.17)

Obviously, gm
11R20du2 ¼ g11dl20 is the excess force applied to the arc dl20 on the dividing surface and

directed along the unit vector i1. Since this direction is perpendicular to the radius vector R10 and unit

vector i3, the product gm
11R10R20du2 is the absolute value of the moment of the above force gm

11R20du2 with

respect to the first curvature center. The integrand ðE11 � Ea
11ÞR2du2 dl ¼ ðE11 � Ea

11Þdl2 dl is the excess

force acting on the area element dl2dl and directed perpendicularly to the radius vector R1. The product

of this force and R1 is the absolute value of the moment of this local force with respect to the first

curvature center. The integration yields the force moment for the whole interface. Hence, Eq. (3.14)

establishes the equivalence between the dividing surface and the real interface with respect to the force

moment of surface tension with respect to the first curvature center. Similarly, the equivalence with

respect to the second curvature center is established by Eq. (3.15). As for the transversal surface tension

gN, it is directed along the normal i3, so that its moment with respect to both the curvature centers is zero.

Therefore, Eq. (3.16) for gN has not such meaning as Eqs. (3.14) and (3.15) for gm
11 and gm

22. Concerning

Eqs. (3.14) and (3.15), it should be noted that, as a result of miswriting in the author’s monograph [50],

related Eqs. (4.23)–(4.26) reviewed earlier [1] were written with squared principal curvature radii instead

of their product, which can be true only for a spherical surface.

Returning to Eq. (3.10), let us see the dependence of ĝ on the dividing surface location at a given

physical state. Differentiating Eq. (3.10) with respect to u30 yields

@ĝ

h30@u30

þ ĝ@ lnðh10h20Þ
h30@u30

¼ Ê
bðu30Þ � Ê

aðu30Þ (3.18)

or, accounting for (3.6),

@ĝ

@l30

þ ĝðc10 þ c20Þ ¼ Ê
bðu30Þ � Ê

aðu30Þ (3.19)

(if superscript a corresponds to the phase with larger pressure and smaller stress, the right-hand side of

Eqs. (3.18) and (3.19) is positive). It is seen from Eq. (3.19) that the surface excess stress tensor is

dependent on the dividing surface location. This is true for every component of the surface excess stress
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tensor. In particular, we can write, using (3.12), for the scalar surface tension defined by Eq. (3.13)

@gm

@l30

þ gmðc10 þ c20Þ ¼
Eb

11ðu30Þ þ Eb
22ðu30Þ � Ea

11ðu30Þ � Ea
22ðu30Þ

2
: (3.20)

In the case of a spherical interface and isotropic bulk phases (c10 ¼ c20 � 1 =R0;
E11 ¼ E22 ¼ E33 �E ¼ � p), Eq. (3.20) is reduced to the Kondo equation for a liquid drop [51]

@gm

@R0

þ 2gm

R0

¼ Eb � Ea ¼ pa � pb; (3.21)

which describes a curve with a unique minimum. The position of the dividing surface corresponding to

the minimum is Gibbs’ ‘‘surface of tension’’ that is equivalent to the real interface both by moment and

force.

A similar equation follows from Eq. (3.12) for the transversal surface tension

@gN

@l30

þ gNðc10 þ c20Þ ¼ Eb
33ðu30Þ � Ea

33ðu30Þ: (3.22)

The analysis and solution of differential Eqs. (3.20) and (3.22) [49] show that, in spite of their formal

similarity, they describe very different behaviors. For liquids, the surface tension gm itself cannot be zero,

but can have a zero derivative (leading to the existence of a minimum as was mentioned above). By

contrast, gN can become zero itself (as composed of two integrals of opposite signs according to

Eq. (3.16)), but cannot have a zero derivative (there is a monotonic change of the normal stress when

passing from phase a to phase b). This behavior of the transversal surface tension will be important for

the analysis of the third-dimension aspect of surface tension in Section 3.2.3.

3.2.2. Definition by force

We now again calculate the excess surface stress replacing the integration over the interfacial volume

by the integration over the interface cross-section. Let us first consider the vector component E1 ¼ i1 � Ê
of the stress tensor Ê, corresponding to the coordinate line 1. We choose the cross-section as a narrow

strip of the coordinate surface u2, u3 within the intervals u2, u2 + Du2 and ua3 ; u
b
3 (Fig. 6). As Du2 tends to
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zero, we obtain, similarly to (3.10),

gf
1 ¼ 1

h20

Z u30

ua
3

ðE1 � Ea
1 Þh2h3 du3 þ

Z u
b

3

u30

ðE1 � E
b
1 Þh2h3 du3

" #
; (3.23)

where gf
1 is the excess surface stress vector on the cross-section perpendicular to the coordinate line 1

(superscript ‘‘f’’ has been introduced to distinguish the definition by force from the definition by moment

in the preceding section). By analogy, we can write for the other principal cross-section (perpendicular to

the coordinate line 2)

gf
2 ¼ 1

h10

Z u30

ua
3

ðE2 � Ea
2 Þh1h3 du3 þ

Z ub
3

u30

ðE2 � E
b
2 Þh1h3 du3

" #
: (3.24)

In the particular case when the coordinate u3 is rectilinear, Eq. (3.23), accounting for (3.8), can be

written in the form

gf
1R20 ¼

Z 0

la
ðE1 � Ea

1 ÞR2 dlþ
Z lb

0

ðE1 � E
b
1 ÞR2 dl: (3.25)

Multiplying both the sides of Eq. (3.25) by the elementary angle du2 (Fig. 6), we obtain, on the left-hand

side, the excess force applied to the arc R20 du2 of the dividing surface cutting line. The integrand on the

right-hand side is the excess force applied to the elementary area R2 du2 dl, and the integrals yield the

total excess force applied to the interface cross-section within the elementary angle du2. Thus, Eq. (3.25)

determines the excess force g1 per unit length of the cutting line on the dividing surface, exactly equal to

the real excess force on the corresponding cross-section of the interface. The same can be said about

every component of vectors gf
1 and gf

2. We now see that Eqs. (3.23) and (3.24) correspond to the force

definition of surface tension.

Among the components of vectors gf
1 and gf

2, gf
11 and gf

22 are of the most importance. From Eqs. (3.23)

and (3.24), we have

gf
11 ¼ 1

h20

Z u30

ua
3

ðE11 � Ea
11Þh2h3 du3 þ

Z ub
3

u30

ðE11 � Eb
11Þh2h3 du3

" #
; (3.26)

gf
22 ¼ 1

h10

Z u30

ua
3

ðE22 � Ea
22Þh1h3 du3 þ

Z ub
3

u30

ðE22 � Eb
22Þh1h3 du3

" #
: (3.27)

According to Eq. (3.13), gf
11 and gf

22 compose the scalar surface tension gf.

By direct differentiating Eqs. (3.23), (3.24), (3.26), and (3.27) with respect to u30, it is easy to establish

that gf
1 and gf

2 and all their components are dependent on the dividing surface location. The resulting

equations for gf
11, gf

22, and gf (written with accounting for Eq. (3.6)) are

@gf
11

@l30

þ gf
11c20 ¼ Eb

11ðu30Þ � Ea
11ðu30Þ;

@gf
22

@l30

þ gf
22c10 ¼ Eb

22ðu30Þ � Ea
22ðu30Þ; (3.28)
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@gf

@l30

þ gf
11c20 þ gf

22c10

2
¼ Eb

11ðu30Þ þ Eb
22ðu30Þ � Ea

11ðu30Þ � Ea
22ðu30Þ

2
: (3.29)

The analysis and solution of differential Eq. (3.28) [49] show that they describe the dependence with a

unique minimum of the surface tension, similarly to Eq. (3.21) leading to the existence of the surface of

tension. In the general case, however, the existence of a minimum cannot serve as a universal evidence of

the surface of tension. The necessary requirement is that the surface tension defined by moment should

coincide with the surface tension defined by force for a certain location of a dividing surface. Evidently,

the simultaneous validity of the conditions gf
11 ¼ gm

11 and gf
22 ¼ gm

22 is scarcely attainable by moving the

dividing surface. However, the requirement (subscript s refers to the surface of tension)

gm ¼ gf ðl30 ¼ l3sÞ (3.30)

is quite realizable and can be taken for the general and rigorous definition of the surface of tension.

Indeed, comparing Eqs. (3.20) and (3.29), we obtain the relationship

@gm

@l30

þ gmðc10 þ c20Þ ¼
@gf

@l30

þ gf
11c20 þ gf

22c10

2
(3.31)

that exhibits a difference between the derivatives @gm=@l30 and @gf=@l30. This means that the curves

depicting the dependencies of the two surface tensions on the dividing surface location have different

slopes and, therefore, are capable of intersecting to satisfy Eq. (3.30).

Using (3.30), we obtain from Eq. (3.31) for the surface of tension

@gm

@l30

� �
s

¼ @gf

@l30

� �
s

� gf
11c10 þ gf

22c20

2
: (3.32)

Turning, for the sake of simplicity, to the diagonal form of the stress tensor and using the simple

equilibrium condition [1] (the general case will be considered in Section 3.3)

gf
11c10 þ gf

22c20 ¼ Eb
33ðl30Þ � Ea

33ðl30Þ; (3.33)

we can write Eq. (3.32) as

@gm

@l30

� �
s

¼ @gf

@l30

� �
s

�Eb
33ðl30Þ � Ea

33ðl30Þ
2

; (3.34)

whereas Eq. (3.20) takes the form

dgm

dl3

� �
s

¼ 1

2
ðgf

11 � gf
22Þðc1 � c2Þ þ Ea

33 �
Ea

11 þ Ea
22

2

� �
� Eb

33 �
Eb

11 þ Eb
22

2

" #
: (3.35)

If both the bulk phases, a and b, are mechanically isotropic, Eq. (3.35) is reduced to

dgm

dl30

� �
s

¼ ðgf
11 � gf

22Þðc1 � c2Þ
2

: (3.36)

Eq. (3.36) shows that, even in the simple case under consideration, the surface tension minimum can

correspond to the surface of tension only for an isotropic interface. The direct calculation shows that the
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coincidence of locations of the surface of tension and the surface tension minimum already fails for a

circular cylindrical interface [49].

General equations relating surface tensions gm and gf to each other can be easily found for the cases

when either the coordinate line 3 is straight or the curvature radii are much larger than the effective

interface thickness. In both the cases, Eq. (3.8) holds and causes Eqs. (3.14) and (3.15), which we now

rewrite in the common form

gm
ii ¼

Z lb

la
ðEii � Ea;b

ii Þð1 þ c10lÞð1 þ c20lÞ dl ði ¼ 1; 2Þ; (3.37)

where Ea;b
ii is Ea

ii at l < 0 andEb
ii at l > 0. Using Eq. (3.8), we also can rearrange Eqs. (3.26) and (3.27) to

the form

gf
11 ¼

Z lb

la
ðE11 � Ea;b

11 Þð1 þ c20lÞ dl; gf
22 ¼

Z lb

la
ðE22 � Ea;b

22 Þð1 þ c10lÞ dl: (3.38)

Differentiating now Eq. (3.37) with respect to c10 and c20 and accounting for Eq. (3.38), we arrive at the

relationships sought for:

gf
11 ¼ gm

11 �
@gm

11

@ ln c10

; gf
22 ¼ gm

22 �
@gm

22

@ ln c20

; (3.39)

gf ¼ gm � 1

2

@gm
11

@ ln c10

þ @gm
22

@ ln c20

� �
: (3.40)

3.2.3. Transversal surface tension

The existence of the transversal surface tension gN imparts a three-dimensional character to the surface

excess stress tensor ĝ defined by Eq. (3.10). Therefore, it is important for surface thermodynamics to

select cases when gN = 0. A general formula for gN is given by Eq. (3.12) at i = 3, and the dependence of

gN on the dividing surface location is given by Eq. (3.22). In the simplest case of a flat interface, these

relationships are reduced to

gN ¼
Z z0

za
ðE33 � Ea

33Þdzþ
Z zb

z0

ðE33 � Eb
33Þdz; (3.41)

dgN

dz0

¼ Eb
33ðz0Þ � Ea

33ðz0Þ; (3.42)

where z is the Cartesian coordinate replacing u3, z0 correspondingly marking the dividing surface location

(the partial derivative in (3.22) has been replaced by the total derivative since all the quantities are now

dependent on z only). The mechanical equilibrium condition expressed in Eq. (2.17) now reads

dE33

@z
¼ � f3; (3.43)
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where f3 is the third component of an external force. If f3 = 0, the value of E33 should be the same along

the z-axis. Eq. (3.41) then yields gN = 0, and we may conclude that the surface excess stress tensor is pure

two-dimensional for a flat interface in the absence of external fields.

The presence of an external field reverses the situation. We illustrate this by the direct calculation of

the transversal surface tension via Eq. (3.41) in the presence of gravity. Let phase a be located below

phase b, and the z-axis is directed upwards from phase a to phase b. Using Eq. (3.43) as a barometric

formula (with f3 = �rg where r is density and g is acceleration due to gravity), we have

E33ðzÞ � Ea
33ðzÞ ¼ g

Z z

za
ðr� raÞdz� gG aðzÞ; (3.44)

where Ga(z) is the current value of adsorption (mass per unit area) on the side of phase a (the boundary

condition r = ra at z = za has been taken into account). Similarly,

pbNðzÞ � pNðzÞ ¼ g

Z z

zb
ðr� rbÞdz� � gG bðzÞ; (3.45)

where Gb(z) is the current value of adsorption on the side of phase b. Putting (3.44) and (3.45) in (3.41)

yields

gN ¼ g

Z z0

za
G aðzÞ dz�

Z zb

z0

G bðzÞ dz

" #
: (3.46)

Assuming the local density to decrease monotonously when ascending from phase a to phase b, we have

Ga(z) < 0, Gb(z) > 0, and, therefore, gN < 0. The transversal surface tension is negative in this case, i.e.

changes to a transversal pressure created by gravity.

Differentiating Eq. (3.46) with respect to z0, we obtain

dgN

dz0

¼ g½G aðz0Þ þ G bðz0Þ� � gG ðz0Þ; (3.47)

where G(z0) is the total adsorption related to the dividing surface with the coordinate z0. Comparing now

Eqs. (3.42) and (3.47), we arrive at the known condition of equilibrium [52]

Eb
33ðz0Þ � Ea

33ðz0Þ ¼ gG ðz0Þ: (3.48)

Considering the dividing surface as a two-dimensional strained membrane, Eq. (3.48) expresses the

trivial fact that, under gravity, a flat membrane can influence the phase stress difference only with its

weight. Since the total adsorption is dependent on the dividing surface location and the above Ga and Gb

have different signs, it is always possible to find such position of the dividing surface within the limits of

the interface that the total adsorption becomes zero. Then Eq. (3.48) becomes of the same form as in the

absence of an external field (the equality of stresses in adjacent phases). However, the transversal surface

tension itself remains different from zero and negative, as a certain indicator of an external field.

Turning to the case of a spherical interface, Eq. (3.12) at i = 3 and Eq. (3.22) become

gN ¼ 1

R2
0

Z R0

0

ðE33 � Ea
33Þr2 dr þ

Z Rb

R0

ðE33 � Eb
33Þr2 dr

" #
; (3.49)
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dgN

dR0

þ 2gN

R0

¼ Eb
33ðR0Þ � Ea

33ðR0Þ; (3.50)

where r is the radial coordinate replacing u3, and r = R0 corresponds to the dividing surface location. The

conspicuous identity of Eqs. (3.21) and (3.50) for the ordinary and transversal surface tensions raises the

question of validity of the above statement about different behavior of functions gmðR0Þ and gNðR0Þ. If

two differential equations are identical, their solutions should also be identical. Indeed, the solution of

Eq. (3.50)

gN ¼ R0½Eb
33ðR0Þ � Ea

33ðR0Þ�
3

þ C

R2
0

(3.51)

is also suitable for Eq. (3.21) if replacing gN by gm. However, the integration constant C is quite different

in the two cases. The integration constant of the Kondo equation is known to be positive, whereas the

constant C in Eq. (3.51) is negative. According to Eq. (3.49), gN should become negative as R0 ! 0 since

E33 decreases with R0. On the other side, gN should be positive as R0 ! Rb. Hence, there always exists

such a dividing surface location inside the interface that corresponds to the condition gN = 0.

Naturally, the question arises: if we consider the dividing surface where gN = 0, does it coincide with

the surface of tension? The reply is easily shown to be positive. It is enough to use the equation

determining the location Rs of a spherical surface of tension [53]Z Rs

0

ðE11 � Ea
33Þðr � RsÞr dr þ

Z Rb

Rs

ðE11 � Eb
33Þðr � RsÞr dr ¼ 0 (3.52)

and the equilibrium condition (Eq. (2.18) written in spherical coordinates)

dðE33r
2Þ

dr2
¼ E11: (3.53)

Combining (3.52) and (3.53) leads to the relationshipZ Rs

0

ðE33 � Ea
33Þr2 dr þ

Z Rb

Rs

ðE33 � Eb
33Þr2 dr ¼ 0: (3.54)

Comparing Eqs. (3.49) and (3.54), it follows that replacing R0 by Rs in Eq. (3.49) immediately coverts gN

to zero. Thus, the surface of tension does coincide with the surface of zero transversal surface tension and

secures the pure two-dimensional character of the surface excess stress tensor for a spherical interface.

The plane or spherical shape of an interface is typically realized in the absence of external fields or in

the special case when a field is directed along the normal coordinate. The general case is more complex,

but, to simplify the formulation, we can pass to the total stress tensor obeying Eq. (2.18) even in the

presence of external fields. The inconveniency arising is the necessity of considering off-diagonal

components of the surface excess stress tensor. For a slightly curved interface of an arbitrary shape or for

the case of the rectilinear normal coordinate, a remarkable relationship has been derived [49]

gN ¼ ðgf
11 � gm

11Þ þ ðgf
22 � gm

22Þ �
@

@l10

½R10ðgf
13 � gm

13Þ� �
@

@l20

½R20ðgf
23 � gm

23Þ�: (3.55)
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Passing to the surface of tension according to Eq. (3.30) eliminates only first two terms on the right-hand

side of Eq. (3.55). Other terms are absent only if the surface excess stress tensor is of diagonal form. It is

known from the tensorial analysis that every tensor can be converted to a diagonal form by turning the

coordinate axes. However, the directions of the coordinate axes, which we have chosen above,

correspond to the interface metrics and cannot be changed arbitrarily. In the absence of fields, the

metric tensor and the stress tensor are typically of the diagonal form simultaneously since the stress

tensor is formed under the influence of the interface metrics. In the presence of external fields of arbitrary

directions, the stress tensor is typically non-diagonal, so that the terms with off-diagonal components in

Eq. (3.55) are retained even for the surface of tension. Correspondingly, the transversal surface tension is

not zero for the surface of tension in the general case.

3.3. General condition of mechanical equilibrium at a curved interface

The most popular relationship in this field is the classical Laplace equation for a spherical interface

2g

Rs
¼ Eb � Ea ¼ pa � pb (3.56)

that follows from Eq. (3.21) for the surface of tension (gm ¼ gf � g, R0 = Rs). Many attempts of

generalizing the Laplace equation were reviewed in a number of surveys in the modern literature [1,54–

58]. However, the results obtained referred to the traditional variant of the theory with the rectilinear

normal coordinate, which correspond to a relatively simple interfacial metrics. A more general approach

was suggested later on [47,48] and is presented below.

Let us consider an element of an interface between phases a and bwithin the coordinates u1; u1 þ Du1;

u2; u2 þ Du2; and ua3 ; u
b
3 , the last two being located already in the bulk phases (Fig. 7). Using the total

stress tensor (including the contribution of external fields), we write the mechanical equilibrium

condition, Eq. (2.16), for the element asI
E dA ¼ 0; (3.57)

where E is the stress vector and the integration is carried out over the whole element surface. This surface

consists of six faces, so that the integral in Eq. (3.57) splits into six parts. The integrals for the lower and

upper faces can be written as ðE3Dl1Dl2Þa and ðE3Dl1Dl2Þb where Dl1 = h1Du1 and Dl2 = h2Du2. We also

have dA1 = Dl2 dl3 = Dl2h3 du3 and dA2 = Dl1 dl3 = Dl1h3 du3 for the element faces perpendicular to

directions 1 and 2, respectively. We also should take into account that forces applied to the opposite faces

act oppositely. Thus, Eq. (3.57) becomes

ðE3Dl1Dl2Þa � ðE3Dl1Dl2Þb � D

Z ub
3

ua
3

E1Dl2h3 du3 � D

Z ub
3

ua
3

E2Dl1h3 du3 ¼ 0; (3.58)

where symbol D at the integrals denotes their increment when moving along the coordinate lines 1 and 2.

Introducing a dividing surface with coordinate u30 and area Dl10Dl20 divides the element into parts a

and b (Fig. 7) adjacent to the corresponding phases. Filling up imaginarily the parts a and b with the

matter of phases a and b, respectively, and assuming them to be at mechanical equilibrium, we can write,
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for each part separately, a condition similar to Eq. (3.58):

ðE3Dl1Dl2Þa � Ea
3 ðu30ÞDl10Dl20 � D

Z u30

ua
3

Ea
1Dl2h3 du3 � D

Z u30

ua
3

Ea
2Dl1h3 du3 ¼ 0; (3.59)

E
b
3 ðu30ÞDl10Dl20 � ðE3Dl1Dl2Þb � D

Z u
b

3

u30

E
b
1Dl2h3 du3 � D

Z u
b

3

u30

E
b
2Dl1h3 du3 ¼ 0: (3.60)

Subtracting Eqs. (3.59) and (3.60) from Eq. (3.58) leads to the condition

½Ea
3 ðu30Þ � E

b
3 ðu30Þ�Dl10Dl20 � Dgf

1Dl20 � Dgf
2Dl10 ¼ 0; (3.61)

where gf
1 and gf

2 are given by Eqs. (3.23) and (3.24), respectively. Dividing now Eq. (3.61) by the area

Dl10Dl20 and letting Du1 and Du2, as well Dl10 and Dl20, tend to zero, we obtain the local mechanical

equilibrium condition at an interface in the form

Ea
3 ðu30Þ � E

b
3 ðu30Þ ¼

@gf
1

@l10

þ @gf
2

@l20

: (3.62)

Eq. (3.62) is applicable to an interface of any shape and curvature. Remarkably, being the most general

among the mechanical equilibrium conditions, Eq. (3.62) is also very simple in form (a reader can

compare Eq. (3.62) with other formulations reviewed earlier, see, e.g. Eq. (4.43) in Ref. [1]). Because of
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its vector form, Eq. (3.62) can scarcely be qualified as a generalized Laplace equation, which, however,

can be deduced from Eq. (3.62) as a consequence.

Expressing the vectors through their components and unit vectors i1, i2, and i3, we rewrite Eq. (3.62) as

X3

k¼1

ðEa
k3 � Eb

k3Þik ¼
X3

k¼1

@gf
k1

@l10

ik þ
X3

k¼1

g
f
k1

@ik

@l10

þ
X3

k¼1

@gf
k2

@l20

ik þ
X3

k¼1

gf
k2

@ik

@l20

: (3.63)

In order to evaluate Eq. (3.63) in terms of local curvatures, we have to reformulate the coordinate system

u1, u2, u3 in terms of the local tangent t, normal n, and bi-normal b of the coordinate lines on the surface.

For a spatial line, the standard Serret–Frenet formulas of differential geometry read

dt

dL
¼ cn;

dn

dL
¼ �ctþ Tb;

db

dL
¼ �Tn; (3.64)

where c and T are the line curvature and torsion, respectively. The torsion is zero for our choice of the

coordinate system. Eq. (3.64) may be used to write the derivative factors involving ik (k = 1–3) in

Eq. (3.63) in terms of the local curvature radii. Two cases of interest exist: when t = i1 with L = l10 and

when t = i2 with L = l20. In the first case, the related normal and bi-normal vectors are, n = �i3 and b = i2
and the corresponding derivatives are

@i1

@l10

¼ � i3

R10

;
@i2

@l10

¼ 0;
@i3

@l10

¼ i1

R10

: (3.65)

In the second case, for t = i2 the related normal and bi-normal vectors are n = �i3 and b = �i1, and the

derivatives are

@i2

@l20

¼ � i3

R20

;
@i1

@l20

¼ 0;
@i3

@l20

¼ i2

R20

: (3.66)

After putting (3.65) and (3.66) in Eq. (3.63), we multiply it separately by i1, i2, and i3 to obtain three

scalar equations equivalent to the vector Eq. (3.62):

Ea
31 � Eb

31 ¼ gf
13

R10

þ @gf
11

@l10

þ @gf
21

@l20

; (3.67)

Ea
32 � Eb

32 ¼ gf
23

R20

þ @gf
12

@l10

þ @gf
22

@l20

; (3.68)

Ea
33 � Eb

33 ¼ � gf
11

R10

� gf
22

R20

þ @gf
13

@l10

þ @gf
23

@l20

: (3.69)

Eq. (3.69) is a generalization of the Laplace equation. Remarkably, both Eq. (3.69) and, generally,

Eq. (3.62) correspond to the results of the theory of shells [20,59]. In the absence of the shear

components of vectors gf
1 and gf

2, Eq. (3.69) takes the form derived first by Buff [52] for the

anisotropic case and changes to the classical form, Eq. (3.56), for the isotropic spherical case. Some

other approaches [60,61], with g13 = g23 = 0 as a requirement of the momentum moment conservation

[62] (in the absence of external fields), lead to similar results. However, the surface stress components

(gm
ik or gf

ik) were not introduced as excess tensions and operated rather as real quantities, which

complicates the comparison. (In some cases, the procedure itself determines the type of tension: it
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should be gm
ik , for example, when the mechanical equilibrium condition is deduced [63] as corre-

sponding to the free energy minimum).

The three-dimensional aspect of surface tension is illustrated by the presence of quantities gf
31 and gf

32

in Eqs. (3.67)–(3.69). These quantities would be absent if surface tension were a pure two-dimensional

quantity as in the classical Laplace equation. However, passing of Eq. (3.69) to the classical form is also

possible when gf
31 and gf

32 are present but are constant along their coordinate lines, so that their

derivatives become equal to zero. Also Eqs. (3.67) and (3.68) are maintained in this case. In the simple

case when the coordinate system chosen diagonalizes the stress tensor, gf
31 and gf

32 become zeros

automatically. Then Eq. (3.69) again takes the classical form, whereas Eqs. (3.67) and (3.68) yield the

condition of constancy of gf
11 and gf

22 along their coordinate lines:

@gf
11

@l10

¼ @gf
22

@l20

¼ 0: (3.70)

It should be emphasized a non-trivial character of the condition expressed in Eq. (3.70) since the surface

tension is always considered as dependent on the surface curvature that can vary along the coordinate

lines.

3.4. Fundamental equations and the Shuttleworth–Herring relation

Constructing thermodynamics is deriving fundamental equations. A detailed derivation of interfacial

fundamental equations for excess quantities was presented earlier [1]. However, not all aspects were

touched upon, and their interpretation in modern reviews [45,64] requires additional comments.

3.4.1. How many dividing surfaces are needed?

The most general way of introducing interfacial excess quantities implies the use of two dividing

surfaces on both the sides of an interface. A rigorous formulation of the procedure for a flat interface was

given by Eriksson [65,66]. For example, locating the dividing surfaces at the normal coordinates za and

zb, we can write the expression for the excess amount ni of the ith species per unit area of the interface

between phases a and b as

ni ¼ G a
i þ

Z zb

za
ci dzþ G

b
i ; G a

i �
Z za

�1
ðci � cai Þdz; G

b
i �

Z 1

zb
ðci � cbi Þdz; (3.71)

where ci, c
a
i , and cbi are the local concentration of the ith species and its values in phases a and b,

respectively; G a
i and G

b
i are the adsorptions of the ith species at the above dividing surfaces only on the

side of phase a and only on the side of phase b, respectively, the z-axis being directed from phase a to

phase b. We see that ni is combined of two excess quantities, the one-sided adsorptions G a
i and G

b
i , and

the integral that represents a real amount of the ith species in between the two dividing surfaces. Such a

mixed character of ni complicates its understanding and use (it is used by necessity in the theory of films,

see Section 5.3).

However, there are two simple limiting cases of ni. When za and zb tend to each other, the first integral

in (3.71) vanishes to yield

ni ¼ G a
i þ G

b
i ¼ G i: (3.72)
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In this case the two dividing surfaces merge in a single surface, ni becomes a pure excess quantity equal to

the ordinary (two-sided) adsorption, and we pass to Gibbs’ thermodynamics. Since G a
i and G

b
i are

typically of different signs, it is possible to shift the dividing surface to the location where Gi = 0. Such a

location is called an equimolecular surface.

The opposite limiting case corresponds to za !�1 and zb ! 1. Then G a
i and G

b
i vanish, and ni

becomes a pure real quantity. In fact, G a
i and G

b
i become negligible already at sufficiently small

displacements of the dividing surfaces along the z-axis, so that one can say about an interface of a

finite thickness considered as a real physical body. The idea of this approach was forwarded by van der

Waals [67–69] and developed by Bakker [70], Verschaffelt [71], Guggenheim [72], and the author

whose monograph [50] presents the most detailed description of this method and is the counterpart of

the book by Defay and Prigogine [73] describing Gibbs’ method. Regarding an interface as a real

physical body has an advantage that not only equilibrium, but also stability conditions, as well as the

powerful apparatus of the modern thermodynamics of solutions, can be applied to a multicomponent

interface. At the same time, Gibbs’ concept of surface tension as an excess quantity is maintained. The

concept of the interface thickness appears in thermodynamics in a conditional meaning since,

naturally, the absolute interface thickness does not exist. For example, one can define the interface

thickness as the difference zb � za for such positions of za and zb on the z-axis where G a
i and G

b
i

amount to 1% (or 0.1%, etc.) of the integral value in Eq. (3.71). This uncertainty in the interface

thickness does not impede the derivation of main thermodynamic regularities. Moreover, stability

conditions establish the lowest limit for the interface thickness in some cases, which can be verified in

experiments with fluid interfaces [50].

Nozieres and Wolf [74] exploited the idea of two dividing surfaces for a solid/solid interface. In this

case (as in the case of two quite immiscible different liquids), there is a natural boundary surface between

the adjacent phases (with no mass transport through the surface). So it is quite reasonable to choose the

boundary surface as a dividing surface. At the same time, one may introduce the equimolecular surfaces

for both the solids, which cannot coincide and should be separated by a certain distance l. However, this

procedure is principally different from the above method of two dividing surfaces, and the distance l has

nothing to do with the interface thickness (width). The difference is that Gi vanishes for the equimolecular

surface as a result of mutual compensations of G a
i and G

b
i in Eq. (3.72), but not due to vanishing each of

G a
i and G

b
i . The adsorption is two-sided in this case, and, hence, we deal with ordinary Gibbs’

thermodynamics and with a single dividing surface. We simply compare two positions of the single

dividing surface: the first where G1 = 0 and the second where G2 = 0 (numbers 1 and 2 refer to the species

of phases a and b, respectively). Distances between various positions of a dividing surface are often used

as parameters in surface thermodynamics (e.g. the Tolman parameter in the dependence of surface

tension on surface curvature, see Eq. (4.15) below), but it would be too inexact to identify them with the

interface thickness. By contrast, the distance between the two equimolecular surfaces of a film can be

a good approximation for the film thickness provided the latter is much larger than the interface

thickness.

Accounting for the said above, it is reasonable to stick to the Gibbs method with using a single dividing

surface as we did earlier [1].

3.4.2. Excess surface strain

Nozieres and Wolf [74] also introduced an excess surface strain as a new concept of surface

thermodynamics that previous theories ‘‘were missing’’ [75]. In their beautiful derivation for a flat
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interface [45], Mueller and Saul showed that, after proceeding to excess quantities, the mechanical work

(2.14) takes the form

dW ¼ A
X
s;t

ðgst de
k
st þ E?

st dēstÞ; (3.73)

where the parallel and perpendicular (to the dividing surface) components of the tensors are taken in the

bulk, A is the surface area, gst is the surface tension tensor and ēst is the excess surface strain tensor

(whose parallel components are zeros due to the non-gliding conditions). Because of its artificial

symmetry, the strain tensor is easily converted to a diagonal form, so that the only component ēzz is

maintained. Multiplied by A, ēzz yields a relative excess volume, and this is a physical meaning of surface

strain. Since such kind of strain is also proper to fluids, the concept of surface strain is equally applicable

to solid and fluid interfaces. Therefore, a general question arises: after the centenary of development of

the thermodynamics of fluid interfaces, should it be reformulated in terms of surface strain?

To answer the question, let us consider the general definition of excess quantities. Taking an extensive

property M of a system with volume V, we define the density of M as m = M/V or, locally, as dM/dV.

According to Gibbs’ method, we use a single dividing surface and take an excess by integrating over the

volume as in the definition (by moment) of the surface tension tensor (3.10). Quite similarly, we can write

as a general definition

m̄� 1

h10h20

Z u30

ua
3

ðm� maÞh1h2h3 du3 þ
Z u

b

3

u30

ðm� mbÞh1h2h3 du3

" #
; (3.74)

where m̄ is the excess value of M per unit area. This formula is valid for adsorption, surface energy,

surface entropy, etc. Setting now M = V, we have m = ma = mb = 1 to yield m̄� 0. To say in words, the

excess volume always and identically equals zero according to Gibbs’ definition of excess quantities. This

statement is well known in surface thermodynamics. We only comment the word ‘‘always’’. The matter is

that, according to Gibbs’ approach and as it is generally accepted in thermodynamics, all thermodynamic

quantities and equations always refer to a current state of a system. Finding an excess quantity for an

unstrained state, the integration is carried out over the volume of the unstrained system, but, proceeding

to a strained state, we already have to integrate over the volume of the strained system. As a result, we

obtain ēzz ¼ 0.

The situation would change if we defined an excess quantity as referring to a certain reference state.

This resembles the theory-of-elasticity method adopted in the popular textbook by Landau and Lifschitz

[3] (which we do not follow as was commented in Section 1 regarding the Cauchy and Piola stress

tensors). Not only a hypothetical unstrained state typically assumed in the theory of elasticity, but also an

arbitrarily strained state (including a state with unstrained bulk phases and a strained interface) may be

taken for the reference state. If the system volume in a reference state is V0, we now have V/V0 6¼ 1, and

an excess volume appears. Setting m = ezz in Eq. (3.74), we can write the definition of excess surface

strain for an interface of arbitrary shape as

ēzz�
1

h10h20

Z u30

ua
3

ðezz � eazzÞh1h2h3 du3 þ
Z ub

3

u30

ðezz � ebzzÞh1h2h3 du3

" #
: (3.75)
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By differentiating (3.75) by u30, we disclose the dependence of the excess surface strain on the dividing

surface location:

dēzz
du30

¼ ebzz � eazz: (3.76)

If ezz is in between eazz and ebzz (which is a typical situation in the absence of adsorbed layers of foreign

substances), it is possible to find such dividing surface location that ēzz ¼ 0. The use of this dividing

surface is easily realizable for flat interfaces. In the case of a curved interface, however, the problem

arises of compatibility of this surface with the surface of tension since only the latter is equivalent to a real

interface both by moment and force.

The existence of excess surface strain can be interpreted as a change of the local spacing of a

crystalline lattice at the interface as compared with a bulk phase. This can be easily detected

experimentally by LEED. However, the Gibbs approach explains the same effect in another language,

considering the above change as an excess of matter at the interface (adsorption or, for a single species,

self-adsorption). To derive interfacial fundamental equations, we have to put the items of Eq. (2.85) in

(3.74) to calculate all excess quantities in a similar way. If, in addition, we address a reference state,

excess entropy and other thermodynamic functions become less understandable and operable, and the

whole theory becomes less transparent. On the other side, remaining within the frames of the Gibbs

approach, we can naturally join classical surface thermodynamics and the theory of elasticity based on

the Cauchy stress tensor with no use of a reference state (to be more exact, a current state plays the role of

a reference state in this approach). We now can answer the above general question as follows: one may

but should not reformulate classical surface thermodynamics in terms of surface strain since surface

thermodynamics is self-consistent without this concept. At the same time, surface strain can be used in

particular tasks of the interfacial theory of elasticity when the method chosen corresponds to this concept.

We also can conclude that surface strain was not missed in the classical theory of capillarity; this concept

simply does not exist in the Gibbs approach.

3.4.3. Excess surface chemical potential

What modern theories are really missing is the excess surface chemical potential. We wrote above

about the chemical potential anisotropy. However, the inhomogeneity of the chemical potential of an

immobile species is still more important factor for a solid, and this factor is directly related to elasticity.

As an immobile species (forming the crystal lattice) is not capable of migration (diffusion), there is no

mechanism of leveling its chemical potential in an ideally elastic solid. They usually ascribe the common

value of the chemical potential to the whole bulk phase of a solid, but this can only means that all parts of

the phase are identical by their origin. As for the interface, the inhomogeneity of chemical potential is

here evident, and the excess surface chemical potential inevitably exists.

To illustrate the importance of this concept, let us consider excess relationships following from

Eq. (2.43). As a preliminary, we represent Eq. (2.43) in terms of the hybrid thermodynamic potential

V�F �
P

i miNi playing the role of free energy with respect to an immobile species and grand

thermodynamic potential with respect to mobile species [1]. As earlier [1], we denote the local density of

V as v to rewrite Eq. (2.43) as

v ¼ m jðkÞc j þ Ek ðk ¼ 1�3Þ: (3.77)
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Eq. (3.77) represents three equivalent but different relationships for three uniform directions in a bulk

phase. Applying (3.77) to an interface, we have only two uniform directions k = 1, 2 along the dividing

surface, so that the relationship for k = 3 should be omitted. The surface excess ofv is known to be Gibbs’

quantity s (the work of formation of a new unit surface area by cutting), which we termed thermodynamic

surface tension [1,76] since it was a scalar and coincided with surface tension in case of liquids. Setting

now m = v and putting (3.77) in Eq. (3.74) and accounting for Eq. (3.10), we obtain two relationships for

excess quantities

s ¼ hm jðkÞc ji þ gk ðk ¼ 1; 2Þ; (3.78)

where the angle brackets symbolize excess. Using the definition of isotropic surface tension (3.13), we

also can write (3.78) as a difference between the thermodynamic and mechanical surface tensions

s � g ¼
hm jð1Þc j þ m jð2Þc ji

2
: (3.79)

If the chemical potential were uniform across the interface, the right-hand side of Eq. (3.79) would be

mjGj where Gj is the adsorption of species j. Then s = g for the equimolecular surface (Gj = 0), which is

the well known result for liquids. Thus, Eq. (3.79) clearly shows that the difference between s and g for

solid surfaces is caused by the non-uniformity of the chemical potential of an immobile species across a

solid interface, i.e. by the existence of excess surface chemical potential.

In a similar way, an excess fundamental equation is obtained from Eq. (2.85) which we, for the sake of

convenience, can write as

dV ¼ �S dT þ V
X3

l;m¼1

Elm delm þ
X3

k¼1

m jðkÞ dNjðkÞ �
X
i

Ni dmi: (3.80)

The procedure was described in detail in [1], and only a small correction should be made. The normal

component of chemical potential mj does not contribute to the excess equation not because of the

uniformity ofmj(3) (of course,mj(3) should be non-uniform across the interface similarly tomj(1) andmj(2)),

but due to the obvious condition dNj(3) = 0 with respect to the interface (adding matter in the normal

direction can enlarge only the bulk phases and produces no excess). The resulting equation is [1,77]

ds ¼ �s̄ dT þ ðĝ � s1̂Þ : dês � dN̂ j

N j

� �
�
X
i

G i dmi; (3.81)

where s̄ is the excess surface entropy per unit area and two dots denote a biscalar product of tensors (cf.

(2.13)). The two-dimensional tensor ês becomes identical to the strain tensor e
k
st in Eq. (3.73) provided

dN̂ j ¼ 0. Otherwise tensor ês is of more general meaning, and the difference dês � dN̂ j=Nj is written to

avoid translational motion of a two-phase system as a whole with no change in state. Eq. (3.81) seems to

contain no contribution from the excess surface chemical potential, but this is not true: this contribution is

masked in the difference ĝ � s1̂.

Eq. (3.81) has two consequences of paramount importance. First, for liquids (when ĝ ¼ g1̂ and s = g)

and for non-deformable solids of a given mass (when dês ¼ 0 and dN̂ j ¼ 0), Eq. (3.81) yields the Gibbs

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239 173



adsorption equation, a central relationship of the theory of capillarity

ds ¼ �s̄ dT �
X
i

G i dmi: (3.82)

Remarkably, the Gibbs adsorption equation turns to be valid not only for fluid systems (for which Gibbs

derived it), but also for rigid solids, which justifies numerous ‘‘illegal’’ applications of the Gibbs

adsorption equation to the case of adsorption on solid adsorbents. The presence of s in the Gibbs

adsorption equation for solids also explains why s can be termed the thermodynamic surface tension.

Second, at constant temperature, chemical potentials of mobile species, and the amount of an

immobile species, Eq. (3.81) yields the Shuttleworth–Herring relation [78–80]

ĝ ¼ s1̂ þ ds

dês
; gst ¼ s þ @s

@esst
; (3.83)

which seems to be the most popular relationship of the theory of solid surfaces. Eq. (3.83) was many

times derived in the literature in different ways. Recently, Mueller and Saul [45] showed that the

derivation of the Shuttleworth–Herring relation at ignoring the non-uniformity of chemical potential

requires double introducing the surface area: the first time as corresponding to the creation of a new

surface and the second time as corresponding to the stretching of an existing surface. The duality of such

simple notion as surface area enlarges the shortcomings of such theories. We should also mention some

alternative formulations of the Shuttleworth–Herring relation [81,82], which seem to be misunderstand-

ings and were correctly criticized [45].

Eq. (3.82) shows that positively adsorbed substances lower the thermodynamic surface tension s. As

for the (mechanical) surface tension g, direct experiments with bending thin plates after one-sided

adsorption clearly manifest a similar influence of adsorbed foreign species on surface stress, which was

lively discussed in the literature (see reviews [37,45,64]). A generalization of the Gibbs adsorption

equation in terms of g was given in due time [76], but was not included in our previous review [1] because

of its relative complexity. In a parallel publication by Halsey [83], a simple method of passing from s to g
was suggested based on the Eriksson equation [84] (a particular case of Eq. (3.81) for an isotropic state)

ds ¼ ðg � sÞdlnA� G 2 dm2 (3.84)

where A is surface area and subscript 2 refers to an adsorbate. From Eq. (3.84), the relationship follows

@g

@m2

� �
A

¼ � @ðG 2AÞ
@A

� �
m2

; (3.85)

which predicts a decrease of surface tension with increasing the adsorbate chemical potential with an

accompanying increase of adsorption. Indeed, the total excess amount of a positively adsorbed substance

G2A can only increase when the surface is enlarged by stretching, so that @(G2A)/@A > 0 and @g/@m2 < 0

(the plate side with adsorbate should become convex in experiments with thin plates). A more detailed

description of this case can be found in review [45]. The modern data on the numerical values of s and g
are summarized in reviews [37,45,64,85,86]. Methods of measuring s and g are described in monograph

[87].
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4. Nanothermodynamics

We can define nanothermodynamics as the thermodynamics of nanoparticles, nanostructures, and

nanosystems (i.e. systems consisting of a large number of nanoparticles). It follows from this definition

that a nanoparticle is a principal object of nanothermodynamics. As for a nanostructure, it can be

understood not only as the structure of a single nanoparticle, but also as a structure formed by a

conglomerate of nanoparticles of any size. A distinctive feature of a small particle is the dependence of its

properties on the particle size, which was recognized still in the classical theory of capillary due to the

Laplace Eq. (3.56). Speaking about the internal mechanical state of a small particle, not only the surface

stress of the first monolayer, but the whole surface tension g is important. A nanoparticle differs from a

small particle at all in that respect that the surface tension itself manifests its size dependence, though this

only play the role of a ‘‘fine structure’’ in the whole effect. Although thermodynamics never deals with

the process mechanism or acting forces, it is appropriate to mention the influence of the quantum-size

effects of surface energy and on the dependence of surface tension on the particle size (to make it

sharper).

An excess stress created by surface tension in a solid particle causes its strain. In the simplest case of an

elastic isotropic spherical particle, the pressure pa inside the particle is related to the radial strain DR/R as

pa ¼ 3KDR

R
(4.1)

where K is the dilatation modulus. Reckoning the pressure and strain from the standard state

corresponding to the external pressure pb and applying Eq. (3.56), we can rearrange Eq. (4.1) to the form

DR ¼ 2g

3K
; (4.2)

from where it follows that the absolute radial deformation DR is independent of the particle size at still

constant g and K (i.e. for large particles). Since DR is composed of the increments of interatomic

distances in the course of strain, the latter should increase with decreasing the particle size and can be

measured by LEED (the particles are assumed to be sufficiently small, but considerably exceeding the

interface thickness). If DR is determined from experiment, Eq. (4.2) estimates surface tension. In this way

the values of g 1.4, 1.2, and 2.6 Nm�1 were obtained for small particles of silver, gold and platinum,

respectively [88–90].

The surface tension of small particles also influences their chemical potential, which is of importance for

the processes of particle nucleation and growth. They now pay attention to the synthesis and growth of

nanoparticles in closed or quasi-closed systems, such as polymeric matrices, (see reviews [91,92]). Since

Gibbs created only the thermodynamics of open systems, this problem requires a special consideration [93].

4.1. Influence of surface tension on chemical potential of a nanoparticle

To make our derivation quite transparent, we first consider the case of a liquid particle when nucleation

is condensation. For a spherical drop (a) with surface tension s and radius R, a trivial relation holds

ma ¼ ma
1 þ 2sva

R
; (4.3)
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where ma
1 is the limiting value of the molecular chemical potential ma at R !1 and va is molecular

volume (that is assumed to be constant). Although Eq. (4.3) implies the mechanical surface tension g
(because of the Laplace equation), we use the symbol of the thermodynamic surface tension s (which is

numerically equal to g for liquids) for the reason that will be clear below when passing to the case of a

solid particle. From (4.3) we have

dma

dR
¼ � 2sva

R2
þ 2va

R

ds

dR
: (4.4)

Outside of the nano-scaled range of R, when surface tension is still constant, Eq. (4.4) predicts a decrease

of chemical potential with increasing the drop size. The situation can change for a nanodrop whit a size-

dependent surface tension. In particular, chemical potential will grow if

ds

dR
>

s

R
: (4.5)

Differentiating (4.4) yields

d2ma

dR2
¼ 4s

rR3
� 4

rR2

ds

dR
þ 2

rR

d2s

dR2
(4.6)

that shows the ma(R) curve to be concave at least for large R.

Eq. (4.3) implies the existence of a bulk phase (a) inside a drop. It may happen, however, that a small

cluster (symbol s) consists of a monolayer of sized molecules (as for solid particles, only the surface

monolayer is typically capable of exchange with the surrounding medium irrespective of the particle

size). In such a cluster, a dividing surface passes through surface molecules as if cutting their volume vs

into two parts. A part of a molecule with volume vsa will be in phase a under the pressure pa, and the other

part of volume vsb will refer to outer phase b with pressure pb. Herewith, the evident relationship holds

vs ¼ vsa þ vsb: (4.7)

In addition, surface molecules are subjected to the action of surface tension. Then, in place of the standard

relationship dm ¼ v d p at fixed temperature and composition, we now have

dms ¼ vsa d pa þ vsb d pb � a ds: (4.8)

where a is the dividing surface area per a molecule (the term �a ds is substantiated in the surface

thermodynamics [50]). Using Eqs. (4.7) and (3.56), Eq. (4.8) can be written as

dms

dr
¼ vs

d pb

dR
� 2svsa

R2
þ 2vsa

R
� a

� �
ds

dR
(4.9)

Let us see what conclusions follow from Eq. (4.9).

We first consider the case when the outer pressure pb is maintained constant. This is typical for open

systems, but can be realized in closed systems with a soft capsule. If surface tension is still constant, we

have from (4.9)

dms

dR

� �
T ; pb;s

¼ � 2svsa
R2

; (4.10)
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which differs from the standard relationship of the nucleation theory only by replacing va by vsa:
Qualitatively, the result is traditional: chemical potential decreases with increasing the drop size. The size

dependence of surface tension is involved in the range of sufficiently small (1–100 nm) radii. It plays a

certain role the sign of the coefficient of ds/dR in Eq. (4.9), which, in its turn, depends on the drop size.

For surface molecules, a is usually larger than 2vsa=R at radii exceeding the molecular size. Then, for

passing to a symbate dependence ofms on R, surface tension should decrease with the particle growth and

obey the condition

� ds

dR
>

s

RðaR=vsa � 1Þ (4.11)

This condition is realized, for example, in surfactant micelles. Thus, the symbate type of dependence of

ms on R is possible on the nano-scaled size range, and, therefore, a maximum of chemical potential is

possible in the range between macro- and nano-scaled radii.

Turning now to limitedly small radii, we have to consider the opposite condition a< 2vsa=R. The case

when a is initially small as compared with 2vsa=R is of no interest (this means that a molecule is situated

inside the drop and is subjected to the analysis given at the beginning of this section). But, even if the

dividing surface bisects a molecule at its widest dimension, this condition turns to be real for a limitedly

small R. For example, a ¼ pR2 < ð4=3ÞpR2 ¼ 2vsa=R for spherical molecules. We then again arrive at the

condition expressed in (4.5) for the symbate dependence, which is scarcely fulfilled [50]. If, nevertheless,

one accepts the symbate dependence for limitedly small radii, one should permit the existence of one

more extreme of the chemical potential (a minimum, this time) at a radius smaller than for a maximum.

We now discuss the cancel of the pressure constancy in the surrounding medium. Let a phase transition

proceed in a closed system of a given volume. If the molecular volume is smaller in phase a than in phase

b, the particle growth is accompanied by decreasing pb (the gas condensation is a typical case). The first

derivative on the right-hand side of Eq. (4.9) is negative in this case, and nothing changes in the above

consideration. If, the reverse, the molecular volume is larger in phase a than in phase b (which is evident

to be a condensed phase), the derivative dpb/dR is positive. Its value increases with R, so that, sooner or

later, this derivative will prevail in the whole Eq. (4.9) (it is known what enormous pressures develop, for

example, in the process of ice crystallization in a closed vessel). Then the derivative dms/dr becomes

positive at a sufficiently large R, and we come to the conclusion of inevitable arising one more minimum

of chemical potential when passing from a nano- to a macro-size of phase a. Thus, our arguments detect

the possible existence of three extremes in the dependence of chemical potential ms on the drop radius,

two minima and one maximum. As for the chemical potentialmb, its behavior is considerably simpler. mb

is usually constant in open systems. In closed systems, the surrounding medium is depleted with the drop

matter in the course of the drop growth, and, hence, mb monotonically decreases with increasing R. The

decrease rate is accrescent and acquires its maximum value (dmb/dR = �1) at attaining a maximum

possible value of R (when the whole matter has overpassed to phase a).

Considering the dependence of the drop formation work W on the drop size, minima correspond to

stable and maxima to unstable states of equilibrium. It was established that the derivative of W with

respect to the drop molecular number n equals the difference between chemical potentials inside and

outside the drop [50]:

dW

dn
¼ ms � mb: (4.12)

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239 177



It follows from (4.12)

d2W

dn2
¼ dms

dn
� dmb

dn
; (4.13)

and we may write the stable equilibrium condition as

ms ¼ mb;
dms

dn
>

dmb

dn
or

dms

dR
>

dmb

dR
(4.14)

According to Eq. (4.14), the equilibrium states are easily found as intersection points of the curves of

dependence of chemical potentials ms and mb on the particle size, while the comparison of their slopes

(accounting for the sign) at an intersection point determines the state stability. Fig. 8 illustrates the case of

an open system when the state of the surrounding medium is fixed. The mb(n) plot is a horizontal line

whose level characterizes the degree of saturation of the surrounding medium with the particle matter. At

mb ¼ m
b
1 the surrounding medium is undersaturated with respect to formation of a stable particle, but

supersaturated with respect to formation of a macroscopic phase. The case corresponds to the classical

nucleation theory of Gibbs and Volmer with a unique unstable particle of the critical size. Increasing mb

tom
b
2 leads to arising a second equilibrium particle size where the particle is stable with respect to growth,

but unstable with respect to the size decrease. Above this value (say, at m
b
3 ), the surrounding medium

turns to be supersaturated with respect to both a macroscopic phase and stable particles. In this situation,

already three equilibrium particle sizes occur, of which two correspond to unstable particles, the largest

particle as the above critical nucleus of a macroscopic phase and the smallest one as a critical nucleus of a

stable particle. At mb ¼ m
b
4 is attained the limiting supersaturation with respect to formation of a stable

particle. Above this value (say, at m
b
5 ), the stable particle formation proceeds with the barrierless

mechanism; there are only two equilibrium particle sizes and no critical nucleus. Eventually, at m
b
6 , the

limiting supersaturation is attained with respect to formation of a macroscopic phase. This state itself still

admits the existence of a unique equilibrium particle (stable to decreasing, but unstable to growth),

which, however, becomes impossible at larger values of mb (when the spinodal decay occurs).

Passing to a closed system, the dependence mb(n) arises (Fig. 9). Its curves can also be positioned on

various levels, respectively to the matter amount in the system. This case differs from the previous one in
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two respects. First, there are no equilibrium states at all if the initial chemical potential value mb(1) is

smaller than a certain value m
b
1 ð1Þ (the counting of n begins with unity). In other words, the phase process

does not proceed if the initial supersaturation does not exceed a certain value. Second, when

mbð1Þ>m
b
1 ð1Þ, all the curves mb(n) intersect the curve ms(n) by necessity, creating one more stable

equilibrium state (Fig. 9). This state corresponds to the largest (up to macroscopic) particle size and is

realized at unlimitedly large supersaturation. As for the other intersection points for the curves ms(n) and

mb(n), they have the same meaning as in the above case of an open system.

Fig. 9 refers to the case when the matter concentration (density) in a particle is larger than in the mother

phase. To make the picture complete, Fig. 10 exhibits the opposite case when growing particles in a

closed system possess lower density in comparison with the matter concentration in the surrounding

medium (as, for example, at the formation of an ice particle in water). Fig. 10 differs from Fig. 9 in the

location of the points of additional stable particles. In both the figures, it is conspicuous the existence of

even four equilibrium particle sizes at the position of the curves mb(n) within the interval between m
b
1 ðnÞ

and the curve corresponding to the limiting supersaturation with respect to formation of the smallest

stable particle (m
b
3 ðnÞ falls in this interval). The latter arises not always and not in any system (for

example, it is typical for micellar systems). So the form of the dependence of ms on n can be simpler that

in the above case that we analyzed as the most interesting for nanothermodynamics.
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when the matter concentration inside the particle is larger than in the mother phase.

Fig. 10. Stable (filled circles) and unstable (empty circles) states in the curve of dependence of the surface chemical potential ms

of a particle on the particle molecular number n at three initial values of chemical potential mb in a closed system for the case

when the matter concentration inside the particle is lower than in the mother phase.



The application of the above analysis to isotropic solid particles requires some comments. According

to Eq. (2.42), the chemical potential of an immobile species is directly dependent on the stress tensor.

Therefore, not s but g (now different from s) should stand in Eq. (4.3) to determine the chemical

potential of a solid. On the other side, as was first shown by Gibbs and confirmed by the subsequent

analysis (see, e.g. [94–98]), the equality of the chemical potential values in a solid and fluid phases at

equilibrium is realized only for a flat interface (see Eqs. (2.24), (2.25), and (2.41)). If the solid surface is

curved, its true chemical potential (not speaking about the chemical potential in the solid bulk) differs

from the chemical potential of the same substance in an adjacent fluid phase even at material

equilibrium. However, there is a quantity, just defined by Eq. (4.3), that should be approximately

equal to the chemical potential in the fluid phase (to be more exact, the term 2s/R should be taken in

combination with the derivative ds/dR). This quantity would be equal to the chemical potential within a

nanoparticle if its surface tension coincided with s. Since just this quantity governs the matter transfer, it

can be called the effective chemical potential of an immobile species in a nanoparticle. The effective

chemical potential is evident to be used when constructing the affinity of a process with participation of

nanoparticles. Thus, to conclude this section, we may say that the above analysis is quite applicable to

isotropic solid particles.

4.2. Dependence of surface tension and surface energy on the nanoparticle size

The surface curvature dependence of surface tension is one of the central problems of the theory of

capillarity and has been under discussion for a long time. The classical Gibbs–Tolman isotherm for fluid

interfaces reads

d ln s

d lnRs
¼ ð2d=RsÞ½1 þ d=Rs þ ðd=RsÞ2=3�

1 þ ð2d=RsÞ½1 þ d=Rs þ ðd=RsÞ2=3�
; (4.15)

where Rs is attributed to the surface of tension and d � R � Rs (R is the radius of the equimolecular

surface) is the Tolman parameter. Expanding Eq. (4.15) in the vicinity of a flat interface (Rs = R = 1)

yields

s

s1
¼ 1 � 2d

R
þ � � � (4.16)

that predicts qualitatively opposite effects (increasing or decreasing surface tension) when curving a flat

interface in different directions. The opposite limit (Rs ! 0) requires a monotonic linear decrease of

surface tension irrespective of the curvature sign [50]. This means that increasing surface tension at

curving a flat interface should be followed by a maximum of surface tension. The first statistical

mechanical calculation of d [99] yielded a positive value for a flat surface of argon, so that it was adopted

for a long time that the surface tension monotonically decreases with the drop radius for a drop and passes

through a maximum for a bubble. However, the modern data are not always in agreement with this

concept [100–102]. Moreover, returning to our molecular dynamics data on argon clusters [103] (which

was the first computer simulation on the mechanical surface tension), we could now provide another

interpretation. The computer experiment was carried out at a reduced temperature of 0.75 (90 K) when

argon clusters can be regarded as liquid with g = s. Fig. 11 shows the results. The g versus R plot scarcely

looks as an asymptotic curve and rather conveys the suggestion that the curve intersects the horizontal
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line depicting the surface tension macroscopic value and, only after passing through a possible

maximum, acquires its asymptotic behavior (which would correspond to d < 0). The general opinion

now is that d is small and rather negative, than positive for argon.

The size dependence of surface tension is especially important for nanoparticles. When relating this

problem to the kind of pair interaction [104], one also touches the problem of surface energy [105]. As

was stated above, Gibbs defined s as the work of formation of unit area of a new surface by cutting.

Applying this definition to the formation of a curve interface, we can imagine a ball of matter transferred

from the interior of a bulk phase to a vacuum. At zero temperature, the work of transfer of the ball from a

fixed position in the bulk of a condensed phase to a fixed position in a vacuum is evident to equal the

energy of cohesion of the ball with its surroundings in the bulk phase. Using the molecular pair potential

Ø(r12) (which inserts, naturally, a certain error as compared with a multi-body potential) the above

cohesive energy, U12, is given by the expression [106]

U12 ¼ 4p2r2

Z 1

rþd

y dy

Z yþr

y�r

�ðr12Þr12½r2 � ðy� r12Þ2� dr12; (4.17)

where r is the molecular number density in the bulk phase, r the ball radius as the distance from the ball

center to the centers of its surface molecules and d is the minimum intermolecular distance (the molecule

size) in the bulk phase (Fig. 12). For the particular case of dispersion forces (�ðr12Þ ¼ �lr�6
12 ) and

choosing d as unit length, Eq. (1) yields

U12 ¼ �p2r2l

12
4R2 � 4 lnð2RÞ � 1

4R2

� �
; (4.18)

where l is the London constant and R � r/d + 1/2 is the dimensionless radius of the equimolecular

surface (Fig. 12). By dividing (4.18) by the surface area 4pR2, we obtain the expression for the cohesive

energy u12 of a curved interface per unit area

u12ðRÞ ¼ �pr2l

12
1 � lnð2RÞ

R2
� 1

16R4

� �
: (4.19)
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Fig. 11. The molecular dynamics simulation of the dependence of the surface tension of argon clusters on the cluster radius

[100]; g and R are represented in units e0/s02 and s0, respectively, where e0 and s0 are the parameters of the Lennard–Jones

potential.



Passing to the limit R ! 1, Eq. (4.19) changes to the well-known expression for the dispersion-forces

cohesive energy of two half-spaces separated by a flat slit of width d (d = 1 this time) [107]:

u12ð1Þ ¼ �pr2l

12
: (4.20)

Since we integrated from a smallest distance, the question arises about the role of repulsion energy. Using

the Lennard–Jones potential �ðr12Þ ¼ �lr�6
12 þ lr�12

12 , we can calculate the contribution of repulsion

energy just in the above way. This contribution depends on R, but is small at large R. In particular, when

taking the repulsion energy into account, (4.20) is replaced by

u12ð1Þ ¼ � 29pr2l

360
(4.21)

which shows the repulsion energy to amount only about 3% in the limit R !1.The opposite limit

R ! 1/2 (when the ball includes only one molecule) requires a separate calculation in the point-force

approach since Eq. (4.19) based on the integration over the ball volume, yields u12 = 0 when the ball

degenerates into a point. The result is

U12

1

2

� �
¼ 4pr

Z 1

1

�ðr12Þr2
12 dr12 (4.22)

or, using the Lennard–Jones potential,

U12

1

2

� �
¼ 4prl

1

9
� 1

3

� �
¼ � 8

9
prl; (4.23)

where the contribution of repulsion amounts 1/3 of that of attraction. In the dimensionless units used, the

volume of a spherical molecule is p/6 and its surface is p, so that the cohesive energy per unit surface area
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Fig. 12. The interaction of a ball of matter inside a condensed phase with its surroundings.



for a single molecule is

u12

1

2

� �
¼ U12ð1=2Þ

p
¼ � 8

9
rl: (4.24)

Assuming the structure of matter unchanged (as a consequence, e.g. of incompressibility and zero

temperature), the work of disjoining of the ball and its surroundings is just equal to the reverse cohesive

energy. Then surface energy e (coinciding with the thermodynamic surface tension s at zero-temperature)

is defined as half of reverse cohesive energy per unit surface area. So we have from (4.19) (neglecting the

contribution of repulsion)

eðRÞ ¼ pr2l

24
1 � lnð2RÞ

R2
� 1

16R4

� �
; (4.25)

which exhibits monotonic increase of surface energy of a nanoparticle with its size. Expanding (4.25) in a

power series of 1/R (b = ln 2 + 1/2 � 1.193)

eðRÞ ¼ pr2l

24

� �
1 � b

R2
þ � � �

� �
; (4.26)

we discover the absence of a linear term in contrast with Eq. (4.16). This effect is predictable. Cohesion

energy equally belongs to the convex and concave surfaces in touch with each other if they possess

identical structures (coinciding with the structure of the bulk phase). As a result, the surface energies of

both of the surfaces are the same and, therefore, are independent of the curvature sign, which is possible

only in the absence of a linear term in (4.26). So we can conclude that a linear term can appear due to

effects of entropy (at temperatures above zero) and of specific surface structure (different for the convex

and concave surfaces) as a consequence of non-zero compressibility.

In two opposite limiting cases R = 1 and R = 1/2, we have from (4.21) and (4.24) (an exact results

accounting for repulsion)

e1 ¼ � 29pr2l

720
; (4.27)

e1 ¼ � 4

9
rl (4.28)

for a macroscopic body and a single molecule in a vacuum, respectively. From (4.27) and (4.28) we

obtain

e1

e1
¼ 4 � 720

29 � 9 � pr
� 3:5

r
: (4.29)

The result is not surprising: it is much more difficult to extract a molecule from the bulk than to transfer

the molecule to the surface. The particular value of e1/e1 depends on the r value (1 � r < 2) that, in its

turn, depends on the type of packing. r = 1 and e1/e1 � 3.5 for the cubic packing. The most compact

packing of hard spheres requires r = 1.4 and e1/e1 � 2.5.
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4.3. Phase transitions in nanoparticles

At studying the process of comminution of solids, it was discovered that one more polymorphous

modification could be found in nanoparticles. Formation of a polymorphous modification is a phase

transition (of the first or second order), so that one may conclude that phase transitions can occur in the

process of dispergation. Already 16 cases of such transformations had been known by 1979 [108]. The

mechanism of phase transition in a nanoparticle can be modeled in various ways [108–110]. However,

due to its small size, a nanoparticle changes its phase state practically instantaneously so that it is hard to

imagine the state of equilibrium between two phases inside the particle. In this case, it is more reasonable

to compare the Gibbs energy values for the nanoparticle as a whole before and after the phase

transformation. Since the amount of matter in the particle does not change herewith, it is enough,

for such consideration, the truncated variant of thermodynamics (without chemical potentials) usually

used in the mechanics of continuum media [3]. We only complement this variant with the account for

surface phenomena [111].

We begin with the fundamental equation for the free energy, F, of a nanoparticle represented as a

combination of a uniform bulk phase a and a piecewise-smooth (faceted) surface:

dF ¼ �S dT þ V0

X
s;t

Ea
st deast þ

X
j

A j0

X
s;t

ðg jðstÞ de
k
jðstÞ þ E?

jðstÞ dē jðstÞÞ; (4.30)

where V0 is the particle volume in a strainless state (a constant quantity in the strain process) and Aj0 is the

area of the jth surface part in the strainless state, the last term corresponding to Eq. (3.73). If a

nanoparticle is subjected to external mechanical actions characterized by the stress tensor Eb
st (considered

to be uniform along the nanoparticle surface for the sake of simplicity), the stable state of the nanoparticle

is a state with a minimum value of thermodynamic potential F (an analogue of Gibbs energy) defined via

free energy F as

F�F � V0

X
s;t

Eb
ste

a
st: (4.31)

Differentiating Eq. (4.31) and expressing dF according to Eq. (4.30), we obtain

dF ¼ �S dT þ V0

X
s;t

ðEa
st � Eb

stÞ deast � V0

X
s;t

east dEb
st þ

X
j

A j0

X
s;t

ðg jðstÞ de
k
jðstÞ þ E?

jðstÞ dē jðstÞÞ:

(4.32)

By the equilibrium conditions, the function F must have a minimum at given T and Eb
st: Therefore, the

second and fourth terms on the right-hand side of Eq. (4.32) should cancel each other (which forms the

mechanical equilibrium condition) to yield

dF ¼ �S dT þ V0

X
s;t

east dEb
st: (4.33)

Note that Eq. (4.33) would be an ordinary fundamental equation for a mechanically anisotropic phase (a)

provided quantity Ea
st stood in place of Eb

st. However, Eq. (4.33) refers to a particle of any complex

structure including its surface layer (according to Gibbs’ method, the action of the strain tensor east is

extended, as well as volume V0, to include the whole particle).
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Let phase a to have a polymorphous modification a0. We may write the same Eq. (4.33) for phase a0.
Then subtracting one equation from the other, we obtain

dDF ¼ �DS dT � DðV0

X
s;t

east dEb
stÞ; (4.34)

where D symbolizes the difference of a quantity for the two modifications (DF � F � F0, etc.). Phase a

is more stable at F < F0 and phase a0 is more stable at F > F0. If, however, DF = 0, both the phases are

equally stable, and, therefore, the particles of both the modifications can exist with equal probability. For

such states Eq. (4.34) changes to the equation

DS dT ¼ �DðV0

X
s;t

east dEb
stÞ (4.35)

showing how the temperature of the polymorphous transformation of a particle depends on external

mechanical actions. Since Eq. (4.34) acts at a constant amount of matter, all extensive quantities in

Eq. (4.35) may be treated as molar quantities.

Proceeding to the analysis of Eq. (4.35), we first turn to the simplest case when the external action is

isotropic: Eb
st ¼ � pbdst where dst is Kronecker’s delta. Such situation is realized, for example, when a

particle is in a medium (liquid or air) with uniform pressure (the influence of gravity is negligible because

of a small particle size). Because of the complexity of the interface shape, the condition of isotropy of

external action is not yet enough to make the particle internal phase a also mechanically isotropic. So the

particle interior and, all the more, the surface layer of the particle can stay mechanically anisotropic.

Putting the above isotropic value of Eb
st in Eq. (4.35) at using Eq. (2.12) reduces Eq. (4.35) to the form

DS dT ¼ DðV � V0Þ d pb; (4.36)

where V is the current particle volume. If the initial volume of a particle in the strainless state V0 is chosen

the same for both the modifications (as did Coe and Paterson [36] in their analysis of the polymorphous

transformation of quartz), Eq. (4.36) is exactly reduced to the Clapeyron–Clausius equation

dT

d pb
¼ DV

DS
: (4.37)

This is a truly amazing fact since we consider not the two-phase equilibrium at a flat interface (when the

Clapeyron–Clausius equation acts), but a polymorphous transformation in a non-uniform particle with a

closed surface. The only condition of applicability of the Clapeyron–Clausius equation to this case turns

to be the use of external pressure pb instead of real pressure pa whose action causes phase transition.

However, external pressure is just that tool that is used by an experimentalist to influence the phase

transition process in a particle (in more general Eq. (4.35), the stress tensor Eb
st includes kicks, impacts,

shear stresses, and all that happens with particles in the comminution process).

As initial Eq. (4.30), Eq. (4.35) is confined with the condition of the constancy of the number of

molecules in a particle. Eq. (4.35) shows how external pressure influences the phase transitions

temperature in a particle with a given number of molecules, but says nothing about the dependence

of the particle structure on the molecule number. Regarding the question how the structure of matter

changes in the process of its comminution, we should be guided by the reasoning of Sections 4.1 and 4.2.

In addition, we can similarly derive, for the separately-taken phase transformation a! a0, the equation
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analogous to (4.35) (Eb
st is replaced by Ea

st):

DS dT ¼ �DðV0

X
s;t

east dEa
stÞ: (4.38)

For a mechanically isotropic state, Eq. (4.38), with the account for (2.12), is reduced to the relationship

DS dT ¼ DðV � V0Þ d pa (4.39)

or, at the same choice of the initial volume V0 for phases a and a0, to the ordinary Clapeyron–Clausius

equation

dT

d pa
¼ DV

DS
(4.40)

If bulk phase a exists inside a nanoparticle (due to its sufficiently large size), the application of

Eq. (4.40) to the particle does not yet form a direct criterion of phase transformation of the particle. This

occurs since surface properties are also important for the particle (for example, a transition predicted by

Eq. (4.40) can be unrealizable because another modification has too high surface tension). Although the

reasoning of necessity of taking into account the anisotropy and surface properties of a particle was

formulated in the literature long ago, the use of the Clapeyron–Clausius equation was the main element of

the analysis of phase transformations in the comminution process [108]. Actually, the Clapeyron–

Clausius equation only indicates the tendency of the process (which, of course, is also useful). We explain

this with an example. If surface tension is positive and the derivative dT/dpa negative, we know that

pressure inside particles increases and the phase transition temperature decreases with decreasing the

particle size in the comminution process. When the phase transition temperature becomes equal to the

real temperature of the system, there can be no phase transition because of surface phenomena. However,

we may think that phase transition will occur, sooner or later, in the process of further comminution.

It is known that the derivative dT/dpa in the Clapeyron–Clausius equation can be of any sign, although

molar volume always decreases with increasing pressure under isothermal conditions and molar entropy

always increases with temperature under isobaric conditions. The case of positive slope of the line of a

polymorphous transformation in the state diagram T � pa is accounted to be normal, and the case of

negative slope is accounted to be abnormal. It was claimed by Lin and Nadiv [108] that belonging to this

two cases also determines the character of phase transition in the comminution process: matter changes to

more dense modification in the normal case and to less dense modification in the abnormal case.

However, the connection between these phenomena seems to be problematic. It seems as if the transition

to a more dense modification at comminution is still more probable in the abnormal case than in the

normal one since inevitable heating (in the process of comminution) works in the same direction as

increasing pressure in particles. That fact that, at comminution, CaCO3 subsequently passes the stages of

vaterite (density 2.64 kg/l), calcite (density 2.72 kg/l), and aragonite (density 2.95 kg/l) [108], can be

explained by a positive value of surface tension and by compression of particles in the comminution

process, but not by belonging the phase transitions of CaCO3 to the normal case. As for the

transformation of massicot (density 9.64 kg/l) into litharge (density 9.35 kg/l) at the comminution of

PbO, this transition, although abnormal indeed for bulk phases, can be explained either by negative

surface tension (unless this will be controverted experimentally by independent measuring surface

tension) or by the role of shear stresses and strains not taken into account in the Clapeyron–Clausius

equation.
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It is of interest the case of zirconia. Its synthetic tetragonal modification (density 5.86 kg/l) with the

particle size 15 nm completely changes to the monoclinic modification (density 5.74 kg/l) at mechanical

treatment. However, at decreasing the particle size to 10 nm, the monoclinic modification is again

consolidated to the tetragonal one [112], although this polymorphous transformation in the bulk refers to

the abnormal case (the monoclinic modification of ZrO2 transforms into the tetragonal one at heating up

to 1100 8C). Such behavior of zirconia can be explained as follows. The tetragonal modification is

metastable at a room temperature and should spontaneously transform into the monoclinic modification.

Mechanical treatment activates this process. However, the pressure inside particles increases and the

polymorphous transformation temperature decreases as the particle size diminishes, unless (as it turns, at

the particle size about 10 nm) the reverse process occurs, the transformation of the monoclinic

modification into the more dense tetragonal modification.

All the said above referred to first-order phase transitions. For second-order phase transitions, DS = 0

and DV = 0, so that the Clapeyron–Clausius equation becomes indeterminate. Phases a 4 a0 become

identical at the point of a second-order phase transition. Therefore, not only thermodynamic potentials of

phases, but also any other quantities (the first derivatives of thermodynamic potentials are advisable to

obtain non-zero values for the difference of the second derivatives of thermodynamic potentials) may be

equated. Regarding the number of molecules in a particle to be fixed, we choose the particle volume Vas

such quantity and as a function of temperature and the external stress tensorEb
ik:

dV ¼ @V

@T

� �
Eb
st

dT þ
X
s;t

@V

@Eb
st

� �
T ;Eb

lm 6¼ st

dEb
st �V u dT þ V

X
s;t

xst dEb
st (4.41)

Here the following designations have been introduced for the sake of brevity: u is the thermal dilatation

coefficient, xst the isothermal compressibilities corresponding to the components of the stress tensor (in

bulk phases, molar volume is not sensitive to the non-diagonal components of the stress tensor; in the case

under consideration, however, any change in the particle shape means a change in its surface area

accompanied by adsorption and the volume change).

Applying now Eq. (4.32) to phases a and a0 and equating the resultant expressions, we obtain the

equation of the hypersurface of a second-order phase transition in the state diagram

Du dT ¼ �
X
s;t

Dxst dEb
st: (4.42)

Similarly to Eq. (4.35), Eq. (4.42) describes the influence of external pressure on the phase transition

temperature, but now for a second-order phase transition. As for the description of a second-order phase

transition in an anisotropic bulk phase a in terms of its own stress tensor Ea
st; corresponding equations

were considered in Section 2.5 to which we refer a reader, but with a certain limitation. Such equations

with no account for surface phenomena are only able for approximate pointing and do not yield a rigorous

description as that given by Eq. (4.42).

4.4. Quasi-chemical description of solid nanoparticles

The dictum ‘‘a crystal is a big molecule’’ is known to a scientist since the student time. At down-the-

line holding this point of view (see, e.g. [113,114], not only crystalline, but also amorphous solid

nanoparticles should be regarded as ‘‘supramolecules’’, their set of same nature and increasing size as
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homologous series, and nanoparticles of same composition but different structure as isomers. For a long

time, such ideas were not embodied in a corresponding rigorous thermodynamic theory (in fact, they used

traditional phase approach when the matter concerns thermodynamics). The corresponding formulation

was given only recently [111], and we reproduce it below.

Thus, let us forget that a nanoparticle is a piece of a phase. Now, it is a single large and complex

molecule or an ion of multiple charge. Both are below called a supramolecule. Let a supramolecule

include n1 structural units of the first sort, n2 structural units of the second sort, and so on. We denote the

whole set of the numbers ni as {n}. The set {n} gives the composition of the supramolecule, as if being a

supramolecule certificate. The symbol {n} will be used below as a subscript to indicate that a quantity

belongs to a supramolecule of a certain type. We designate the supramolecule chemical potential m{n}

and write, using known results of statistical mechanics for ordinary molecules, its detailed expression as

mfng ¼ G0
fng þ kBT lnðcfngL3

fng ffngÞ; (4.43)

where G0
fng is the Gibbs energy of a supramolecule of sort {n} with resting center of mass in a given

medium in the absence of other supramolecules, kB is the Boltzmann constant, L{n} and f{n} are the de

Broglie wavelength and the activity coefficient of supramolecules, respectively. The de Broglie

wavelength of a supramolecule is given by the expression

Lfng � hð2pmfngkBTÞ�1=2; (4.44)

where h is the Planck constant and m{n} is the supramolecule mass compiled of the masses of

supramolecule structural units mi as

mfng ¼
X
i

mini: (4.45)

The interaction of a supramolecule with a medium is taken into account in G0
fng: As for the activity

coefficient f{n}, it reflects the interaction of supramolecule with each other. It is possible to include the

quantity kBT ln f{n} into G0
fng and write Eq. (4.43) in the form

mfng ¼ G0
fng þ kBT lnðcfngL3

fngÞ; (4.46)

where G0
fng is already understood as the Gibbs energy of a supramolecule of sort {n} with resting center

of mass in a dispersion medium containing other supramolecules (G0
fng now accounts for the interaction

of the supramolecule not only with the medium, but also with other supramolecules present in the

system).

Calculating the Gibbs energy G0
fng may be detailed as follows. First of all, one should take into account

the difference in the energetic state of structural units on the surface of a supramolecule and inside the

supramolecule. Let there be bin
2=3
i structural units of the ith sort on the surface where bi is a numerical

coefficient determined by the chemical structure and geometrical shape of a supramolecule. We now

imagine that, in the initial state, the structural units of the supramolecule were separated and placed in a

vacuum with the resting state of their centers of mass. The Gibbs energy of such a state is
P

i g
0
i ni where

g0
i is the Gibbs energy of a separate structural unit of the ith sort with resting center of mass in a vacuum.

The transfer of this structural unit into the interior of the supramolecule (we mark the supramolecule

interior with the symbol a) will require the work wa
i . Obviously, wa

i < 0 since binding energy in a solid

exceeds, in its absolute value, the positive kinetic energy of oscillatory motion acquired by the structural
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units as a result of such transfer. The subsequent transfer of a structural unit to the supramolecule surface

requires an additional work was
i (s symbolizes the surface region of a supramolecule, the sequence of the

subscripts indicating the transfer direction). Since such transfer is accompanied by the rupture of bonds, it

is evident that was
i > 0. We now may write the expression

G0
fng ¼

X
i

g0
i ni þ

X
i

wa
i ni þ

X
i

was
i bin

2=3
i ; (4.47)

and Eq. (4.46), after the substitution of (4.47) in (4.46), takes the form

mfng ¼
X
i

g0
i ni þ

X
i

wa
i ni þ

X
i

was
i bin

2=3
i þ kBT lnðcfngL3

fngÞ: (4.48)

In principle, the quantities wa
i and was

i , even in dilute systems, depend on {n} and, in particular, on the

supramolecule size. However, accounting for this dependence becomes necessary, first, only for very

small (one can say small in the limit) particles and, second, only for weak chemical bonds (approaching

ordinary molecular forces).

The further algorithm of constructing the theory suggests itself. Any physicochemical process,

including chemical reactions, is governed by chemical affinity. If a process is symbolically depicted by

the equationX
fng

nfngBfng )
X
fng

n0fngBn
0
fng; (4.49)

where the initial substances stand on the left and the process products (marked with a prime) on the right,

n{n} are stoichiometric coefficients, the chemical affinity A of the process is given by the expression (cf.

Eq. (2.100))

A�
X
fng

ðnfngmfng � n0fngm
0
fngÞ; (4.50)

where m{n} are the chemical potentials of substances B{n} that feature in Eq. (4.49). If supramolecules

(nanoparticles) participate in the process, their chemical potentials will enter Eq. (4.50). The subsequent

analysis is carried out as it is generally accepted in the thermodynamics (both equilibrium and non-

equilibrium) of chemical reactions. For the sake of illustration, we consider two examples of physi-

cochemical processes. As a first example, we take a polymorphous transformation considered above

within the frames of the phase approach.

4.4.1. Phase transitions

A polymorphous transformation is now meant as a monomolecular isomerization chemical reaction of

type

Bfng )B0
fng (4.51)

proceeding under the influence of external factors. We assume that factors act simultaneously on all

particles of the system, so that the polymorphous transformation simultaneously occurs in all particles of
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a given composition. The chemical affinity of the reaction expressed in Eq. (4.51) is

A ¼ mfng � m0
fng: (4.52)

Substituting (4.46) in (4.52) and accounting for that the concentration and the de Broglie wavelength are

the same for both the isomers, we arrive at the expression

A ¼ G0
fng � G0 0

fng �DG0
fngð¼ DGfngÞ: (4.53)

It is shown in Eq. (4.53) that the chemical affinity can also be represented as the difference of the total

Gibbs energy Gfng for the two isomers of a supramolecule (the quantities G0
fng and Gfng differ by 3kBT/2).

If a supramolecule is so large as to obey the mechanics of continuous media, we can define G0
fng as the

function F by Eq. (4.31) and repeat all the derivations of Section 4.3. In particular, by setting the affinity

expressed in (4.53), equal to zero, we will obtain the equations for the equilibrium of the two isomers and

again come to the Clapeyron–Clausius equation. It is of note that the problem is now solved to a larger

extent since G0
fng also includes the interaction between a given supramolecule and other supramolecules

(which can influence polymorphous transformations). Herewith, general thermodynamic equations

maintain their form, but the values of the quantities standing there, are implied to be more exact.

4.4.2. Dissolution or evaporation of nanoparticles

As the second example of a physicochemical process, we consider the dissolution (evaporation) of a

nanoparticle. Chemically, this is the reaction of dissociation of a supramolecule into its components. For

the sake of simplicity, we assume the supramolecule to consist of structural units of only one type (for

example, we meet such situation at the dissolution of a molecular crystal). Then Eq. (4.48) is reduced to

the form

mn ¼ g0nþ wanþ wasbn2=3 þ kBT lnðcnL3
nÞ; (4.54)

where n is the number of the structural units in the supramolecule. As a result of dissociation, the

structural units take on independence and acquire the chemical potential

m ¼ g0 þ wb þ kBT lnðcL3Þ; (4.55)

where b symbolizes the solution phase and wb is the work of transfer of a single structural unit with

resting center of mass from a vacuum to a fixed point of the real solution (the sign of the work wb is

determined by the character of interaction of the structural unit with a solvent). Turning to Eqs. (4.44) and

(4.45), we conclude that, in the case of a one-component supramolecule under consideration, the de

Broglie wavelength of the supramolecule Ln and the de Broglie wavelength of a single structural unit L
are related by the simple equation

Ln ¼ Ln�1=2: (4.56)

From the chemical point of view, the dissolution process is a sequence of dissociation reactions of the

form

Bn)Bn�1 þ B; Bn�1 )Bn�2 þ B; ::: (4.57)
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The corresponding chemical affinity (by the first reaction example) is

An ¼ mn � mn�1 � m: (4.58)

When substituting Eqs. (4.54) and (4.55) in Eq. (4.58), we consider the quantities wa
i , was

i , and b to be

independent of n for the sake of simplicity. As a result, also accounting for Eq. (4.56), we obtain

An ¼ wa � wb þ wasb½n2=3 � ðn� 1Þ2=3� � kBT lnðcL3Þ þ kBT ln
cnn

�3=2

cn�1ðn� 1Þ�3=2
: (4.59)

Evidently, the work difference wa � wb is the work of transfer of a structural unit from solution to the

interior of the supramolecule, wba (we remind that the subscript sequence indicates the direction of

transfer). The quantity wba is negative, but the reverse quantity wab is positive (the transfer is

accompanied by the rupture of bonds in the supramolecule):

wa � wb�wba ¼ �wab: (4.60)

Using the binomial expansion, we come to the relationship

n2=3 � ðn� 1Þ2=3 � 2

3
n�1=3 (4.61)

that turns to be an acceptable approximation practically for all n. We now turn to the last term in

Eq. (4.59). Let us assume that supramolecules of sort n � 1 were absent in the initial state and they all

have been formed by the removal of a structural unit from supramolecules of sort n. Then we may set

cn = cn – 1 if neglecting the system volume change at dissolution. As a result, the last term in (4.59) will

differ from zero only at the expense of the difference of the numbers n and n � 1, so that the last term will

amount fractions of kBT. Under such conditions, the last term in (4.59) becomes negligible and may be

omitted. We now rewrite Eq. (4.59), accounting for (4.60) and (4.61), in the form

An � �wab þ 2

3
wasbn�1=3 � kBT lnðcL3Þ: (4.62)

The augend on the right-hand side of Eq. (4.62) is negative and constant, whereas the addend is positive

and n-dependent. The product FL3 is of the meaning of a volume fraction (and is close to the real volume

fraction for structural units of atomic dimensions) and, therefore, is always smaller than unity. Hence, the

last term on the right-hand side of (4.62) is also positive. At a fixed temperature, it depends only on

concentration and increases with decreasing concentration. Evidently, irrespective of the supramolecule

size, the last term will secure a positive value for the whole right-hand side of (4.62). So we arrive at the

condition An > 0 that means that the dissolution process develops. We have An ¼ 0 at equilibrium. Then

Eq. (4.62) immediately yields the detailed expression for the solubility of a particle of size n:

c � 1

L3
exp

�wab þ ð2=3Þwasbn�1=3

kBT

� �
: (4.63)

It is seen form (4.63) that the particle solubility increases with decreasing the particle size. At passing to a

macroscopic solid (n ! 1), the solubility acquires a constant value determined by the work on escaping
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a structural unit from the solid bulk to the solution:

c � 1

L3
exp �wab

kBT

� �
: (4.64)

Thus, we see that Eq. (4.62) well describes all known regularities of dissolution.

Summing up all Eqs. (4.58), we can write the affinity of complete dissolution of a particle consisting of

n structural units as

A ¼ mn � nm: (4.65)

By substituting Eqs. (4.54) and (4.55) in Eq. (4.65) and accounting for (4.56), we obtain

A ¼ �wabnþ wasbn2=3 � nkBT lnðcL3Þ þ kBT lnðcnL3n�3=2Þ: (4.66)

Neglecting a change in the system volume at dissolution, we can write the mass balance condition as

c = cnn. Then we may neglect the last term in (4.66) at a sufficiently large n to obtain

A � �wabnþ wasbn2=3 � nkBT lnðcnnL3Þ: (4.67)

The process will develop at A> 0. Therefore, we can write the condition of complete dissolution of

nanoparticles at a given concentration cn as

�wabnþ wasbn2=3 � nkBT lnðcnnL3Þ> 0; (4.68)

where cn plays the role of a constant. The exact analytical solution of this inequality is problematic.

However, in the case when the logarithmic term is negligible, the approximate solution is found at once

n1=3 <
bwas

wab
: (4.69)

The particular final result depends on the value of the right-hand side of Eq. (4.69). However, the

principal significance of this formula is that it shows the possibility of the particle size boundary below

which the stable existence of the particles becomes impossible (they dissolve spontaneously). In the size

region below the boundary, particles can arise only by fluctuations, and this statement is known to be the

cornerstone of the whole physical theory of phase nucleation. Thus, we see that the chemical approach

leads to the same conclusions as the phase approach.

In Eq. (4.59) we assumed the concentration of supramolecules of different size to be equal since they

change to each other in the simultaneous dissolution process. We now consider the case of equilibrium

between supramolecules of different sizes but then, evidently, of different concentrations. Returning to

Eq. (4.66), we should now set A ¼ 0 and write the equilibrium condition as

cn ¼ cnL3n�1n3=2 exp
�wabnþ wasbn2=3

kBT

� �
: (4.70)

Now already the concentration c plays the role of a constant, and Eq. (4.70) shows that supramolecular

homologues of various mass, each homologue being with its individual concentration cn, can be in

equilibrium with free structural units of a given concentration. We remind that the quantities wab and was

include the interaction between supramolecules, and, therefore, wab and was themselves are dependent

on n and cn. Only in the case of a dilute system when such interaction is negligible (this means that the
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activity coefficient f{n} in Eq. (4.43) is unity), the right-hand side of Eq. (4.70) is an explicit function of n

and yields explicitly the equilibrium distribution of supramolecular homologues. Of course, a reader has

noticed that Eq. (4.70) contains the mass action law. Actually, our derivation was reduced to finding an

expression for the mass-action-law constant in terms of the parameters of the system under consideration.

5. Line tension and wetting

The line tension as a concept of surface thermodynamics seems to be introduced by Gibbs who wrote

about ‘‘a certain linear tension’’ in his theory of capillarity [7]. Nevertheless, the wide investigation of

this quantity was undertaken a century later and is in full play now. At first sight, linear phenomena

should be simpler than surface ones for the reason that the number of dimensions for a line is smaller by

one than that for a surface. This would be true if we actually dealt with a one-dimensional system when

considering a linear boundary in surface thermodynamics. In reality, however, we deal with a three-

dimensional system when considering both surface and linear phenomena. The difference is that we refer

excess thermodynamic quantities of a three-dimensional system to a surface in the first case and to a line

in the second case. As a result, linear phenomena turn to be more complex than surface ones both

experimentally and theoretically. Experimentally, line tension is typically small and is much more

difficult for measuring than surface tension. Theoretically, line tension is more complicated than surface

tension because only two bulk phases can meet at a surface, whereas several bulk and also surface phases

can meet simultaneously at a line.

A review on linear phenomena was given earlier [1], and we only complement it here in some aspects.

Importantly, the material collected gives evidence that linear phenomena can occur in a variety of

systems with line tensions of different behavior. Practically, we have several line tensions which should

be distinguished and classified. So it is useful to begin this section with a modern classification of line

tension [115].

5.1. Classification of line tension

5.1.1. Mechanical and thermodynamic line tension

Gibbs [7] was first to distinguish between two definitions of surface tension for solids, the first

defining surface tension g (see Section 3.2) as a mechanical force along the surface per unit perimeter

length (an excess mechanical stress) and the second defining surface tension s (see Section 3.4)

thermodynamically as the work (a change in a corresponding thermodynamic potential) of formation

of a new surface per unit area. The mechanical surface tension can be different for different directions

on the surface, so that the mechanical surface tension gk along the direction k is related to the surface

excess stress tensor ĝ as

gk ¼ ĝ � nk (5.1)

where nk is the unit vector along the direction k and gk should also be understood as a vector (as a scalar

product of a tensor and a vector). The scalar surface tension g is defined as half of the trace of tensor ĝ (see

Eq. (3.13)). Comparing g and s, the thermodynamic theory shows these quantities to be different at the

existence of the chemical potential gradients near the surface (see Eq. (3.79)). For this reason, the

difference between g and s can be also realized for non-equilibrium fluid interfaces. As was discussed
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first by Shuttleworth [78], the mechanical surface tension g and the thermodynamic surface tension s are

also different in their use in the fundamental relationships of the theory of capillarity. For example, g is

used in the Laplace equation and s is used in the Young equation for wetting. It is important to mention

that, according to the stability conditions, s is always positive (a body with negative s would disintegrate

spontaneously), whereas g can be of any sign except for the case of an equilibrium fluid interface when

g = s > 0.

Similarly, the mechanical line tension t and the thermodynamic line tension k are defined.

Approaching a linear interface, the excess surface stress tensor ĝ becomes a function of the coordinate

N normal to the dividing line and takes an increment DĝðNÞ as compared with its value far from the line.

Then t is defined as [1]

t�
X
i

Z 1

0

Dĝi dNi (5.2)

where the summation is carried out over all surfaces meeting at the line. As is seen from (5.2), t is of a

tensorial origin, although t often consists of a single component directed along the line. The thermo-

dynamic line tension k is defined as the work of formation (per unit length) of a new line. k is a

thermodynamic counterpart of t and a one-dimensional analogue of s. For a one-component system, s
and k are surface and line free energy, respectively. Concerning the use of t and k in various relationships

of the theory of capillarity, one can follow a general rule that t should be used in combination with (or

instead of) g and k should be used in combination with (or instead of) s. As for the sing of t and k, it

depends on the line tension type to be considered in the subsequent sections.

5.1.2. Line tension in two-dimensional systems

In two-dimensional systems, phases are separated not by surfaces but by lines, and interfacial tension

becomes linear. In this case, the line tension is a natural analogue of surface tension at lowering the space

dimensionality by one, so that the basic properties of interfacial tension derived in a general way remain

valid. In particular, k is positive by the stability conditions, whereas t can be of any sign except for the

case of a fluid two-dimensional system when t = k > 0. The last condition, however, can change when a

two-dimensional system is on a solid substrate.

The thermodynamics of line tension in fluid two-dimensional systems has been described in detail in

Ref. [50]. In particular, there is an analogue of the generalized Laplace equation

pa � pb ¼ t

r
þ @t

@r
; (5.3)

where p is the two-dimensional pressure, r the curvature radius of a dividing line, a and b are the symbols

of adjacent two-dimensional phases. For the line of tension (an analogue of Gibbs’ surface of tension)

@t=@r ¼ 0 and Eq. (5.3) takes a traditional form of the Laplace equation.

In reality, a two-dimensional system (e.g. an insoluble surfactant monolayer) is situated between two

bulk phases, so it is possible to introduce the notion of surface tension for the two-dimensional system.

Then Eq. (5.3) is written

gb � ga ¼ t

r
þ @t

@r
: (5.4)
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In an equilibrium fluid system, Eq. (5.4) can be also written in terms of s and k since g = s and t = k. If,

however, one of the phases is solid, g 6¼ s and t 6¼ k, but Eq. (5.4) including force quantities remains

valid.

Another basic equation of the theory of capillarity, the Young equation, originally includes energetic

quantities. It is easy to derive a two-dimensional analogue of the Young equation [115]. Let us consider a

two-dimensional wetting drop (phase a) at the boundary of two-dimensional phases b (a liquid or a gas)

and g (a solid, the symbol g used below as a superscript not to be confused with surface tension). To find

an equilibrium contact angle u (Fig. 13), we apply the two-dimensional Gibbs–Curie principle as the

condition of a minimum of line free energy at a constant area of phase a:

kabLab þ kagLag þ kbgLbg þ 2h ¼ a minimum; (5.5)

where L is the line length (the double superscripts indicate the phases between which a line is located) and

h is the work of formation of the point of the triple contact abg. By differentiating (5.5) with the

relationships dLbg ¼ �dLag and dLab=dLag ¼ cos u in mind, we obtain

kbg ¼ kag þ kab cos u þ Lab
@kab

@Lag
þ Lag

@kag

@Lag
þ 2

@h

@Lag
: (5.6)

If the width of the two-dimensional drop is larger than the total effective thickness of the linear

interfaces ab and ag, the line tensions kab and kag can be taken as constants. Then, for a not very small

drop, Eq. (5.6) becomes

kbg ¼ kag þ kab cos u þ 2
@h

@Lag
: (5.7)

In fact, the point work h depends only on the contact angle u which is uniquely determined by the length

of the linear interface ag at the constancy of the drop area. For example, in the case of a rectilinear

boundary of a solid phase gwhen the shape of the two-dimensional drop is a circular segment as is shown

in Fig. 13 (two-dimensional phases are usually horizontal and are not influenced by gravity),

du

dLag
¼ � u � sin u cos u

ð1 � u cot uÞLag < 0; (5.8)

and, therefore,

dh

dLag
¼ � 1

Lag
@h

@u

u � sin u cos u

1 � u cot u
: (5.9)
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It is seen from Eq. (5.9) that the last term in (5.7) is negligible for a two-dimensional drop of a sufficiently

large length. Then Eq. (5.7) becomes

kbg ¼ kag þ kab cos u; (5.10)

which is a direct analogue of the Young equation.

5.1.3. Line tension of multiphase contact line

For the boundary of contact of three or more three-dimensional phases, it is also necessary to

distinguish between the mechanical line tension t and its thermodynamic analogue k. These quantities

coincide for fluid boundaries, and the general condition of equilibrium can be written

t

r
þ @t

@r
¼ �

X
i

g i cos’i; (5.11)

where r is the curvature radius of the dividing line (where the dividing surfaces of the phases meet), w the

angle between a dividing surface and the osculating plane of the dividing line, and i is the ordinal number

of a surface. For a lens of phase a at the boundary of phases b and g (Fig. 14), we have g1 = gbg, w1 = p,

w2 = u2, and w3 = u3 (ui are the lens contact angles), and Eq. (5.11) takes the form [116]

t

r
þ @t

@r
¼ gbg � g2 cos u2 � g3 cos u3 (5.12)

The quantities t and g in Eq. (5.12) can be replaced by k and s, respectively. The derivative @t/@r can

be interpreted doubly as corresponding either to a real variation of the line and the angles or to an

imaginary displacement of the location of the dividing line. In the analysis of the dependence of line

tension on the dividing line location [116], the problem is that, in reality, there are no surfaces and line but

a complex spatial distribution of stresses, which we try to describe with the aid of simple geometrical

images. The image of a stretched surface is Gibbs’ surface of tension, a particular location of the dividing

surface. Similarly, there exists a line of tension for the three-phase contact for which @t/@r = 0, and the

problem is whether the line of tension coincides or not with the line of intersection of the surfaces of

tension. If yes, then a mechanical problem is formulated for a heterogeneous medium with surface and

line stresses, which can be described under static or dynamic conditions at an arbitrary configuration [20].

For the line of tension, Eq. (5.12) is written as

t

r
¼ gbg � g2 cos u2 � g3 cos u3: (5.13)
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Neglecting line tension, Eqs. (5.12) and (5.13) and, in the general case, Eq. (5.11) express the Davydov

equation [117] more widely known as Neumann’s triangle [118].

We now turn to analogues of the Young equation. Concerning the case of wetting the flat surface of a

rigid solid (g2 = gag, u2 = 0, g3 = gab), the lens of phase a possesses a single contact angle u, and it seems

to be enough to rewrite Eq. (5.13) in the form [119]

t

r
¼ gbg � gag � gab cos u (5.14)

However, Eq. (5.14) has two disadvantages. First, Eq. (5.14) does not include the force of reaction of a

solid to the applied force of the surface tension of a wetting liquid. The stress distribution in the solid near

the three-phase contact line is such as not to be imitated by a stretched line, so that the formal including

this stress (or only its tangential component) in t changes the meaning of the line tension. Second, if even

we accept such a procedure, mechanical Eq. (5.14) does not produce a thermodynamically equilibrium

contact angle since any value of u is mechanically equilibrium (a force applied to a solid in any direction

is equilibrated by internal stresses in the solid).

Only the energetic approach yields a correct formulation of the problem of a thermodynamically

equilibrium contact angle. The energetic analogue of Eq. (5.14) is [120–124]

k

r
¼ sbg � sag � sab cos u: (5.15)

In contrast with Eq. (5.14), Eq. (5.15) determines a unique possible equilibrium contact angle. More

general relationships were obtained by Toshev [125] (see also [126])

sbg ¼ sag þ sabcos u þ k

r
cos’ (5.16)

and by the author [1,127]

sbg ¼ sag þ sab cos u þ k

r
þ @k

@r

� �
cos’; (5.17)

where w is the angle between the wetted solid surface and the local osculating plane of the three-phase

contact line. As compared with Eq. (5.16), Eq. (5.17) includes a correction related to the dependence of k
on the line curvature radius. The larger the line curvature radius (or the smaller line tension), the smaller

is the influence of line tension according to Eqs. (5.15)–(5.17) which change to the classical Young

equation as r !1.

Concerning the sign of the line tension of the three-phase contact line, the rigorous thermodynamic

analysis of the stability conditions for heterogeneous systems with taking into account surface and linear

phenomena [1,128] does not lead to a certain sign for the line tension of the three-phase contact line (both

t and k) even in the case of a fluid system. Moreover, the stability conditions are better satisfied with a

negative (but restricted in value) line tension in some cases. Both positive and negative values of k for the

three-phase contact line are met in the literature as a result of experimental and theoretical estimations.

We will return to the analysis of Eq. (5.17) in Section 5.2.

5.1.4. Effective line tension on deformable solids

As was already noted, the force of surface tension of a liquid (gab) acts on a solid at wetting. Because

of a very small thickness of a surface layer, such a force is very concentrated and can cause an appreciable
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surface strain if the elasticity modulus of the solid is sufficiently low. Such effects are observed for gels,

rubbers, and other bodies with a low elasticity modulus, the deformation mainly occurring along the

three-phase contact line. The work of deformation W per unit length of the three-phase contact line can be

included into line tension. In this way, the effective line tension k0 can be defined [127]

k0 � kþW (5.18)

The work W contains contributions from the volume and surface deformation of a solid and also from the

change of the solid configuration in a gravitational field. W ! 0 and k0 ! k in the limit of large values of

the elasticity modulus. In the limit of small values of the elasticity modulus, k0 ! W and the line tension

changes its physical meaning. Herewith, Eq. (5.17) maintains its validity [127,128] and exhibits a direct

influence of deformation on the contact angle value. This effect is well illustrated by the experimental

dependence of the contact angle on the size of a drop placed on an easily deformable substrate [129].If a

solid is not only easily deformable but also anisotropic, the deformation becomes dependent on the

direction on the surface. Then the effective line tension changes when moving along the three-phase

contact line. According to Eq. (5.17), the contact angle will be a function of a direction on the surface in

this case even if the surface is smooth and quite uniform (the anisotropy of wetting at an ordered surface

roughness is well known as caused by capillary forces). The anisotropy of wetting of this kind was

discovered [130] at studying the wetting of stretched elastomeric substrates whose internal anisotropy

appears due to the orientation of molecular chains along the direction of stretching. The new phenomenon

related to effective line tension shows how great can be the role of line tension in surface science.

5.1.5. Line tension of a Plateau border in foams

The line tension of a Plateau border in foams is a direct analogue of the line tension of a three-phase

contact line. The difference is that interfaces are replaced with foam films meeting at a Plateau border.

The Plateau border profile and the scheme of passing to the line tension are shown in Fig. 15. Neglecting

the contact angle at meeting a film and a rectilinear Plateau border, the latter can be considered as phase b

filling the space between three touching columns, of radius r, of phase a. The Plateau-border cross-

section area Ab is

Ab ¼ r2 31=2 � p

2

	 

� 0:1613r2: (5.19)

Depicting each film with a single dividing surface (marked with the symbol gF of the film tension in

Fig. 15), the films should meet at a line (point O in Fig. 15) to which we may ascribe a certain line tension.
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We first find the total force fb acting through the Plateau border cross-section and composed of surface

and bulk contributions. The surface contribution is evident to be prg where g is the ordinary surface

tension. According to the Laplace equation, the stress inside the Plateau border is �pb = – pa + g/r. Then

the force acting through the bulk cross-section area is (– pa + g/r)Ab, and the total force is given by the

expression

fb ¼ prg þ � pa þ g

r

	 

Ab ¼ � paAb þ 31=2 þ p

2

	 

gr; (5.20)

where Eq. (5.19) has been used. This force acts through the cross-section shown on the left side of Fig. 15.

Introducing now the Plateau border line tension as an excess quantity, we have to compare the force given

by Eq. (5.20) with the force

� paAb þ 3gFlb (5.21)

corresponding to the right side of Fig. 15, where lb ¼ r=
ffiffiffi
3

p
is the triangle bisectrix length (up to the

triangle center). Subtracting (5.21) from (5.20), we arrive at the Plateau border line tension [131,132]

t ¼ p

4
�

ffiffiffi
3

p

2

� �
gFrffi � 0:0806gFr: (5.22)

Similarly to the ordinary surface tension g, the film tension gF is always positive, which yields a negative

value for the Plateau border line tension according to Eq. (5.22). Interestingly, still Gibbs predicted a

negative value for the Plateau border line tension [7, p. 293]. By its absolute value, the Plateau border line

tension is larger than ordinary line tension by several orders of magnitude. For example, setting gF � 2g,

g = 50 mN m�1, and r = 0.1 mm yields k = �8 � 10�7 N against 10�10 N as a typical absolute value for

the ordinary line tension.

The above model corresponds to a smooth transition from a Plateau border to a film with a zero contact

angle. In principle, the contact angle u is not zero for thin films, although is usually small [133]. For this

case, gF ¼ 2g cos u and a more exact formula for the Plateau border line tension is [132]

t ¼ gr
p

2
�

ffiffiffi
3

p
� 3u þ 3

2
sin 2u þ

ffiffiffi
3

p
sin2 u

� �
: (5.23)

A detailed analysis of the Plateau border line tension and its behavior in a gravitational field was carried

out in [131,132].

5.1.6. Line tension of a filament

The line tension as a mechanical quantity can be introduced practically for any capillary body by

combining the force of capillary pressure (the product of the capillary pressure pc and the body cross-

section area A) and the force of surface tension (the product of surface tension g and the cross-section

perimeter P). In the vector form, a general formula for the line tension is

t ¼ �pcAþ
I

g dP: (5.24)

Herewith, if a body is axial-symmetrical, the line tension is directed along the symmetry axis. The

simplest example is a uniform cylindrical filament of radius r. In this case, pc = g/r, A = pr2, P = 2pr, and
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Eq. (5.24) yields

t ¼ pgr: (5.25)

An equilibrium shape of a filament or a liquid cylinder of oscillating thickness is an unduloid, which is

a figure of revolution whose radius smoothly changes between a minimum and a maximum values, R1 and

R2. For example, the unduloid shape is typical for liquid bridges connecting solid particles. In cylindrical

coordinates r and z, the unduloid surface profile is [134]

z ¼ 
½r1Fðk; ’Þ þ r2Eðk;’Þ�; (5.26)

where F and E are the elliptic integrals of the first and second kind, respectively:

Fðk;’Þ ¼
Z

d’

ð1 � k2 sin2 ’Þ1=2
; Eðk; ’Þ ¼

Z
ð1 � k2 sin2 ’Þ1=2

d’; k2 � R2
2 � R2

1

R2
2

;

sin2 ’� R2
2 � r2

R2
2 � R2

1

:

The capillary pressure of the unduloid is 2g/(R1 + R2). Correspondingly, the contribution to the line

tension from capillary pressure is

� pcA ¼ � 2pr2g

R1 þ R2

(5.27)

and changes with r. The contribution from surface tension is

2prg sinf ¼ 2pgðr2 þ R1R2Þ
R1 þ R2

(5.28)

and also changes along the axis since the unduloid profile slope f is variable. However, the sum of (5.27)

and (5.28) is strictly constant along the axis and makes the unduloid line tension

t ¼ 2pgR1R2

R1 þ R2

(5.29)

As is seen from Eq. (5.29), the unduloid line tension is positive. This secures the adhesive action of a

liquid bridge between solid particles.

5.1.7. Point tension

The further decrease of dimensionality by one leads from line tension to point tension which can also

be mechanical (an excess stress at a point) or thermodynamic (the work of formation of a point). Is it

possible a classification for point tension? The existence of point tension in a pure two-dimensional

system depends on the possibility of realization of one-dimensional phase transitions: if there are no one-

dimensional phase transitions, there cannot be a point tension of this type. Point tension is evident to exist

in three-phase contact phenomena, as was shown at the derivation of Eqs. (5.6) and (5.7) where the

thermodynamic point tension h stands. It should be added that point tension of this type (corresponding to

meeting not less than three lines) can be realized also in the three-dimensional space. If a solid is

deformable, the introduction of an effective point tension including the deformation work, is possible
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both in two- and three-dimensional systems, the form of thermodynamic relationships, e.g. of Eq. (5.7),

being maintained.

5.2. Line tension and the generalized Young equation

We now return to the generalized Young Eq. (5.17) and the line tension of the three-phase contact line.

The Young equation, one of the central relationships of the classical theory of capillarity, was multiply

discussed in the literature, and the corresponding survey was presented earlier [1]. We now pay attention

to some new results that were obtained recently [135].

5.2.1. Thermodynamic potential of a solid with a sessile drop

Let us consider the system including a substrate, a one-component sessile drop and its vapor. As was

explained earlier [1] (see also text before Eq. (3.77)), systems including both solid and fluid phases are

better described by a hybrid thermodynamic potential V playing the role of free energy with respect to an

immobile species and grand thermodynamic potential with respect to mobile species. Neglecting gravity,

the expression for V of the system under consideration is

V ¼ � paVa � pbVb þ sabAab þ sagAag þ sbgAbg þ kL (5.30)

where p is the pressure, V the volume, A the surface area, L the length of the three-phase contact line; the

single and double superscripts mark corresponding phases and interfaces, respectively.

If there is no overlapping of the liquid/substrate and liquid/vapour interfaces in the central part of the

drop, the drop profile will be spherical far from the three-phase contact line according to the condition of

mechanical equilibrium between the liquid and the vapour in the absence of gravity. Overlapping of the

surface layers is responsible for the formation of an underlying (precursor) film modifying the solid

surface and leading to a difference between sbg and the surface tension of a ‘‘bare’’ solid surface. The

possible presence of the precursor film on the substrate is taken into account in Eq. (5.30) by the term

sbgAbg. Neglecting the precursor film thickness, one can assume the entire sessile drop to have the shape

of a spherical segment. Its radius and contact angle can be found from the condition of a minimum of the

potential V.

We define the excess quantities standing in Eq. (5.30) by choosing the Gibbs dividing surfaces as the

segment spherical surface with radius R and contact angle u and flat surfaces ag and bg in the framework

of the Gibbs method. Using the spherical segment geometry yields an expression for V in terms of R and

u:

V ¼ �ð pa � pbÞpR3ð2 þ cos uÞð1 � cos uÞ2

3
þ 2psabR2ð1 � cos uÞ � ðsbg � sagÞpR2 sin2 u

þ 2pkR sin u � pbVt � sbgAt;

(5.31)

where Vt � Va + Vb is the total volume of the fluid phases and At � Aag + Abg is the total area of the solid

substrate. Evidently, potential V also depends on the chemical potential m of molecules in the system and

on the temperature T of the system.
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5.2.2. The dependence of the line tension on the dividing surface location

Let us see what condition follows from the variation of the location of the drop dividing surface at

maintaining the physical state of the system, i.e. from the choice of various radii R for the drop spherical

segment at fixing all physical characteristics within the interface. Naturally, thermodynamic potential V
(as well as the state parameters for the bulk phases) cannot depend on the pure imaginary variation of

radius R. Marking such variations with square brackets, we write this condition as

dV

dR

� �
¼ 0: (5.32)

When applied to a free drop (u = p, At = 0) Eqs. (5.31) and (5.32) lead to the Kondo equation (cf. Eq. (3.21))

pa � pb ¼ 2sab

R
þ dsab

dR

� �
(5.33)

where the pressure difference plays the role of a constant. The solution of differential Eq. (5.33) is

sab ¼ K

R2
þ cR; (5.34)

where the constant K is the work of the drop formation and c � ( pa � pb)/3. The plot of the function

(5.34) is characterized by a unique minimum of sab. The location of the dividing surface at the minimum

is called surface of tension, for which Eq. (5.33) changes to the Laplace equation. In terms of the

minimum coordinates Rst and s
ab
st , the constants K and c are

K ¼ s
ab
st R

2
st

3
; c ¼ 2s

ab
st

3Rst
: (5.35)

In our case, similar to the case of a free drop, all dividing surface positions are concentric. However,

they are segmental but not sectorial in the case of a sessile drop (Fig. 16), so that the relationships hold

R sin u ¼ r; R cos u ¼ h ¼ a constant; (5.36)

where r is the three-phase contact line radius and h is the distance from the curvature center to the solid

surface. Putting now Eq. (5.31) into Eq. (5.32) and taking into account Eq. (5.36), we obtain

� 2pR2ð pa � pbÞð1 � cos uÞ þ 2pRsabð2 � cos uÞ þ 2pR2ð1 � cos uÞ dsab

dR

� �

� 2pRðsbg � sagÞ þ 2pk

sin u
þ 2pRsin u

dk

dR

� �
¼ 0: (5.37)
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If we now express the surface tension derivative with the aid of Eq. (5.33), Eq. (5.37) immediately leads

to the generalized Young equation (cf. Eq. (5.17))

sbg � sag ¼ sab cos u þ k

r
þ dk

dr

� �
: (5.38)

The left-hand side of Eq. (5.38) is a constant at a fixed physical state. This allows rewriting Eq. (5.38)

as a differential equation

dk

dr

� �
þ k

r
þ a

ðr2 þ h2Þ3=2
¼ b; (5.39)

where

a�Kh; b� sbg � sag � ch: (5.40)

Thus, three constants h, a, and b are present in Eq. (5.39). The solution of Eq. (5.39) is

k ¼ br

2
þ a

rðr2 þ h2Þ1=2
þ d

r
; (5.41)

where the integration constant d can be expressed through the radius r = rlt of the dividing surface on the

substrate plane at the extreme point (a minimum) for the line tension k as a function of r:

d ¼ br2
lt

2
þ að2r2

lt þ h2Þ
ðr2

lt þ h2Þ3=2
: (5.42)

By analogy with the surface of tension, the dividing line characterized by r = rlt where [dk/dr] = 0 can

be called the line of tension [116]. With this choice of a dividing surface, the generalized Young

Eq. (5.38) takes the simplest form

sbg � sag ¼ sab cos u þ klt

rlt
; (5.43)

where klt is the value of k at r = rlt. The line tension for the line of tension klt can also be expressed as

klt ¼ brlt �
arlt

ðr2
lt þ h2Þ3=2

: (5.44)

According to Eqs. (5.35) and (5.40), the constant a is positive, whereas the constant b can be either

positive or negative depending on the substrate wettability. Since, obviously, rlt > 0, the value of klt can

be either positive (at b> a=ðr2
lt þ h2Þ3=2

) or negative (at b< a =ðr2
lt þ h2Þ3=2

).

We designate as rst the radius of the dividing line, on the substrate, corresponding to the choice of the

surface of tension as a dividing surface between the liquid and the vapor. From the above phenom-

enological analysis, it is hard to deduce how the quantities rst and rlt are related to each other. One can

only expect that their coincidence can be completely random and rare. In particular, this means that there

is no reason for neglecting the last term in Eq. (5.38) when using the surface of tension (as well as the

equimolecular surface) as a dividing surface between the liquid and the vapor.
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5.2.3. The equilibrium condition at the three-phase contact line

In terms of thermodynamic potential V, the equilibrium principle can be formulated as

@V

@u

� �
T ;m;R

¼ 0: (5.45)

The location of a dividing surface is now considered as given at fixed conditions (and is arbitrary since the

conditions themselves are arbitrary). Fixing the temperature and chemical potential means the constancy

of all state parameters of the system including the curvature radius R of the drop surface. By contrast, the

distance h (see Fig. 16) becomes variable. Herewith the relationship is fulfilled

@r

@u

� �
T ;m;R

¼ R cos u: (5.46)

Putting Eq. (5.31) in Eq. (5.45) with accounting (5.46) yields

� ð pa � pbÞpR3 sin3 u þ 2psabR2 sin u þ 2pkR cos u � 2pðsbg � sagÞR2 sin u cos u

þ 2pR2 sin u cos u
@k

@r

� �
T ;m

¼ 0: (5.47)

It is implied here that the line tension k = k(T,m, r) does not explicitly depend on the contact angle u. If we

now replace the difference pa � pb by the expression following from the Kondo Eq. (5.33), Eq. (5.47)

changes to the generalized Young equation at a certain given (by external conditions) location of the

dividing surface and at a dividing line corresponding to this dividing surface:

sbg � sag ¼ sab cos u þ k

r
þ @k

@r

� �
T ;m

� r tan u

2

dsab

dR

� �
: (5.48)

Taking the surface of tension as the dividing surface, Eq. (5.48) becomes

sbg � sag ¼ sab cos u þ k

r
þ @k

@r

� �
T ;m

; (5.49)

which coincides with Eq. (5.17) at w = 0. Comparing the right-hand sides of Eqs. (5.38) and (5.49), we

arrive at the relationship

@k

@r

� �
T ;m

¼ dk

dr

� �
þ r tan u

2

dsab

dR

� �
: (5.50)

Eq. (5.50) relates the physical dependence of the line tension on the radius of the three-phase contact line

at given temperature and chemical potential to the imaginary dependence of the line and surface tensions

on the dividing surface location. If the surface of tension is chosen as a dividing surface, the surface

tension derivative in Eq. (5.50) becomes zero, and we arrive at a remarkable relationship

@k

@r

� �
T ;m

¼ dk

dr

� �
: (5.51)
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Eq. (5.51) means that, with this choice of a dividing surface, the derivative of the line tension with

respect to radius of the three-phase contact line at constant temperature and chemical potential coincides

with the line tension derivative at an imaginary shift of the dividing surface at fixed physical state of the

system.

5.2.4. The role of linear adsorption

As it was shown above, there remains a possibility for the line tension variation together with the

radius of the three-phase contact line even when a certain choice is made for the location of the dividing

surface between the liquid and the vapor and all the state parameters of the bulk phases and surfaces, like

the temperature and the chemical potential, are fixed. The corresponding derivative stands in the

equilibrium condition expressed by Eq. (5.48). To write the expression for the total differential of the line

tension, it is sufficient to supplement the partial differential corresponding to this derivative with the

terms with differentials of temperature and chemical potential:

dk ¼ @k

@r

� �
T;m

dr � sl dT �L dm: (5.52)

Coefficients sl and L are known as the linear excesses of entropy and matter, respectively, related to the

unit length of the three-phase contact line. Eq. (5.52) is the linear adsorption equation [136,137] called by

analogy with the Gibbs adsorption equation for surfaces (the excess L plays the role of a linear

adsorption). At a constant temperature, Eq. (5.52) yields an important relationship

@k

@r

� �
T ;m

¼ dk

dr
þL

dm

dr
: (5.53)

In particular, Eq. (5.53) permits us finding the partial derivative (@k/@r)T,m from the linear adsorption

value L and the derivatives dk/dr and dm/dr along equilibrium states. For example, such calculations are

possible by applying the density functional method based on the models for intermolecular potentials

[138–140] and by applying the method of the functional of the local thickness of a liquid film based on the

approximations for the isotherm of the disjoining pressure as a function of the film thickness [140–142].

Both these methods are capable of independent calculating the contact angle, the chemical potential of

molecules in a system and the linear adsorption as functions of the dividing line radius.

Some assertions can be made without using any specific model. Let us assume that the line tension k
and the linear adsorption L expressed as functions of the equilibrium contact line radius r have the

following asymptotic behavior:

k ¼ k0 þ Oðr�1Þ; L ¼ L0 þ Oðr�1Þ (5.54)

with the finite limits k0 and L0 corresponding to the bulk coexistence at m! m0 (where r !1, i.e. the

contact line becomes straight). Under assumption of incompressible liquid, we have for the pressure

difference

pa � pb � m� m0

va
; (5.55)
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where va is the molecular volume in phase a. Using the Laplace equation and Eq. (5.54) yields

dm=dr ¼ �2sabvar�2 sin u, which leads to the following estimation:

L
dm

dr
¼ �2L0s

ab
0 var�2 sin u0 þ Oðr�3Þ; (5.56)

where s
ab
0 is the value of the surface tension sab at m = m0 and u0 is the limiting macroscopic value of the

contact angle. According to Eq. (5.54), there is an estimation dk/dr = O(r�2). It means that under the

assumptions expressed in (5.54), the partial derivative ð@k=@rÞT ;m ¼ Oðr�2Þ , while for the term k/r on the

right-hand side of the generalized Young Eq. (5.49), the estimation k/r = k0/r + O(r�2) can be made.

Therefore, if the linear adsorption L has a finite limit at the bulk phase coexistence, the term ð@k=@rÞT ;m
can be neglected for sufficiently large drops and the term k/r can be approximated with its asymptotic

form k0/r.

5.3. Thin wetting films on/in solids

We begin with some remarks on terminology. Concerning films, the words ‘‘thick’’ and ‘‘thin’’ are not

common epithets but rigorous scientific notions. A film is called thick if it contains a bulk phase (a) in the

interior. In other words, the film interfaces do not overlap in a thick film, and, as a consequence, the film

tension gF is composed of the interfacial tensions on the film sides. For a thick film between phases b and

g, the film tension is

gF
1 ¼ gab1 þ gag

1 ; (5.57)

where subscript 1 implies the condition for the film thickness H ! 1 (in fact, this means that the film

thickness considerably exceeds the interface thickness and atomic dimensions).

Due to overlapping its interfaces, a thin film does not contain a bulk phase inside. A thin film is

completely non-uniform along its thickness and may be treated in the same way as we dealt above with

interfaces, i.e. a single dividing surface can be introduced and the film tension can be defined by analogy

with interfacial tension (see Section 3.2). However, unlike an interface, a thin film always has its mother

phase a (of which the film was formed), which is suggestive to introducing two dividing surfaces and

using phase a as a reference phase. In this variant of the thermodynamics of thin films [50], Eq. (5.57) is

replaced by a more general relationship

gF ¼ gab þ gag þPH; (5.58)

where P is disjoining pressure. All quantities in Eq. (5.58) are dependent on the film thickness, and the

additional relationship holds [50]

@ðgab þ gagÞ
@H

¼ �PðHÞ: (5.59)

Derjaguin [143,144] introduced the disjoining pressure of a film as a difference between the external

pressure Pb and the pressure Pa in the film mother phase taken at the same temperature and chemical

potentials as in the film:

P�Pb � Pa: (5.60)
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A modified definition is [145]

P�PN � Pa (5.61)

where PN is the normal component of the pressure tensor inside a film. Since Pb ¼ PN by the mechanical

equilibrium condition for a flat film, Eqs. (5.60) and (5.61) express the same definition in the case of flat

films. However (Eq. (5.61) is of the local character, which allows to extend the definition to films of

arbitrary shape. The behavior of the function P(H) is a result of the play of molecular forces, which was

the object of numerous theoretical and experimental studies [144]. Generally not only P! 0, but also

PH ! 0 as H !1 to reduce Eq. (5.59) to Eq. (5.58).

For a long time, the theory was formulated mainly for plane-parallel films. Considering thick films, the

attention was paid to the Gibbs elasticity (see review [146]), whereas the problems of thin films were

concentrated round the disjoining pressure. Meanwhile, both mechanisms of elasticity, the Gibbs

elasticity and the disjoining pressure, can work simultaneously in a thin film provided it consists of

more than one species. The thermodynamic theory of this phenomenon was formulated recently [147]. If,

however, a film consists of a single species, Gibbs’ mechanism of elasticity does not act, and the

disjoining pressure remains the only source of the film elasticity and stability.

Some results obtained for flat films were also applied to films with variable thickness when the

disjoining pressure is combined with the capillary pressure. For the transitional zone between a meniscus

and a wetting liquid film on a solid, Derjaguin proposed the mechanical equilibrium condition [143,144]

gðc1 þ c2Þ þPðHÞ ¼ Pc; (5.62)

where g is the ordinary surface tension (usually taken as g1), c1 and c2 are the principal curvatures of the

film surface, and Pc is the capillary pressure (i.e. Pa � Pb or Pb � Pa) of an equilibrium drop or a

meniscus. Because of its simplicity, Derjaguin’s method was widely used (see review [148]). A

modification of Eq. (5.62) was also suggested including the additional factor cos w where w is the

local slope angle at the film/fluid interface [142,149]. However, the local disjoining pressure of a non-

uniform film was taken from the data for flat films, so that the results were applicable only to slightly non-

uniform (in thickness) films. Only recently, there was elaborated a general and rigorous approach to

characterize the mechanical equilibrium condition for a non-uniform and anisotropic thin film with

arbitrary slopes of its surfaces and an arbitrary gradient of its thickness [150–152]. The results are

presented below.

5.3.1. Mechanical equilibrium condition at the surface of a thin film

We now have to return to Section 3.3 and to repeat the derivation of the mechanical equilibrium

condition for an interfacial element with the only difference that the lower and upper faces of the element

marked with symbols a and b (Fig. 7) are not located inside the corresponding bulk phases which both or

one of them can be absent in the system. In comparison with Eq. (3.62), the result now looks more

cumbersome:

Ea
3 ðu30Þ � E

b
3 ðu30Þ ¼

@gf
1

@l10

þ @gf
2

@l20

� ½E3ðua3 Þ � Ea
3 ðua3 Þ�

h1ðua3 Þh2ðua3 Þ
h10h20

þ ½E3ðub3 Þ � E
b
3 ðu

b
3 Þ�

h1ðub3 Þh2ðub3 Þ
h10h20

; (5.63)
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where force-defined gf
1 and gf

2 are the element tension vectors (we omit superscript ab for the sake of

brevity). The quantities E3ðua3 Þ and E3ðub3 Þ are the real stress vectors applied to the lower and upper faces

of the element, respectively, while Ea
3 ðua3 Þ and E

b
3 ðu

b
3 Þ are the stress vectors in the corresponding bulk

phases (extrapolated to the coordinates ua3 and ub3 if the bulk phases are non-uniform). If the coordinates

ua3 and ub3 turn to be inside the bulk phases (the case of a thick film), E3ðua3 Þ and Ea
3 ðua3 Þ, as well as E3ðub3 Þ

and E
b
3 ðu

b
3 Þ, become identical, and Eq. (5.63) is reduced to Eq. (3.62) where we should now understand

gf
1 and gf

2 as gf
11 and gf

21.

Applying Eq. (5.63) to the surface of a thin film, we have the situation when the outer phase b is a real

bulk phase. Therefore, we always can choose the coordinate ub3 inside phase b to annul the last term in

Eq. (5.63). Then a general formulation of the mechanical equilibrium condition for the surface of a thin

film is

Ea
3 ðu30Þ � E

b
3 ðu30Þ ¼

@gf
1

@l10

þ @gf
2

@l20

� ½E3ðua3 Þ � Ea
3 ðua3 Þ�

h1ðua3 Þh2ðua3 Þ
h10h20

: (5.64)

The vector Eq. (5.64) corresponds to three scalar equations (cf. (3.67)–(3.69))

Ea
13ðu30Þ � Eb

13ðu30Þ ¼
gf

31

R10

þ @gf
11

@l10

þ @gf
12

@l20

� ½E13ðua3 Þ � Ea
13ðua3 Þ�

h1ðua3 Þh2ðua3 Þ
h10h20

; (5.65)

Ea
23ðu30Þ � Eb

23ðu30Þ ¼
gf

32

R20

þ @gf
21

@l10

þ @gf
22

@l20

� ½E23ðua3 Þ � Ea
23ðua3 Þ�

h1ðua3 Þh2ðua3 Þ
h10h20

; (5.66)

Ea
33ðu30Þ � Eb

33ðu30Þ ¼ � gf
11

R10

� gf
22

R20

þ @gf
31

@l10

þ @gf
32

@l20

� ½E33ðua3 Þ � Ea
33ðua3 Þ�

h1ðua3 Þh2ðua3 Þ
h10h20

; (5.67)

where the coordinate ua3 conditionally demarcates two film parts related to the opposite sides of the film.

If bulk phases a and b are uniform and isotropic, all the off-diagonal elements of the bulk pressure

tensors, as well as the corresponding components of vectors Ea
3 and E

b
3 , vanish. The diagonal components

can be written as E11 ¼ E22 ¼ E33 ¼ �P. In this case, Eqs. (5.65)–(5.67) become

gf
31

R10

þ @gf
11

@l10

þ @gf
12

@l20

� E13ðua3 Þ
h1ðua3 Þh2ðua3 Þ

h10h20

¼ 0; (5.68)

gf
32

R20

þ @gf
21

@l10

þ @gf
22

@l20

� E23ðua3 Þ
h1ðua3 Þh2ðua3 Þ

h10h20

¼ 0: (5.69)

Pa � Pb ¼ gf
11

R10

þ gf
22

R20

� @gf
31

@l10

� @gf
32

@l20

þ ½E33ðua3 Þ þ Pa� h1ðua3 Þh2ðua3 Þ
h10h20

: (5.70)

In the absence of external fields, the stress tensor is formed under the influence of the space metrics.

Since the metric tensor of a film has the diagonal form in the curvilinear orthogonal coordinate system

chosen (see Section 3.1), the stress tensor can also be considered as diagonal in all parts of the film. As a

consequence, the surface tension vectors will contain only normal components. In this simple case,
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Eqs. (5.68)–(5.70) are reduced to the conditions

@gf
11

@l10

¼ @gf
22

@l20

¼ 0; (5.71)

Pa � Pb ¼ gf
11

R10

þ gf
22

R20

þ ½E33ðua3 Þ þ Pa� h1ðua3 Þh2ðua3 Þ
h10h20

: (5.72)

In the particular case of a flat film, we use Cartesian coordinates x, y, z, and the Lame coefficient ratio

in Eq. (5.72) is unity, whereas the terms related to curvature vanish. Denoting now E33ðua3 Þas the normal

pressure �PN(za), we obtain

Pa � Pb ¼ Pa � PNðzaÞ: (5.73)

Eq. (5.73), on one side, yields the known equilibrium condition PN = Pb and, on the other side, shows the

equivalency of the disjoining pressure definitions given in (5.60) and (5.61). Since the coordinate za is

chosen arbitrarily, Eq. (5.73) shows PN to be independent of z as well as of spatial coordinates at all.

Thin films can be located not only on the solid surface, but also in narrow slits inside a solid. As an

example, we consider a film of variable thickness in a wedge-shaped slit with plane sides. If the wedge

sides are identical, it is natural to introduce the middle plane as a basement for the interfacial element

(Fig. 17). The dividing surface is plane in this case. The coordinates are cylindrical with u1 = r, u2 = z,

u3 = w and with the Lame coefficients h1 = 1, h2 = 1, h3 = r. Eq. (5.72) now becomes

Pa � Pb ¼ Pa þ E33ð’aÞ; (5.74)

from where E33 is seen to be again a constant (with respect to the coordinate w this time). Denoting

E33 ¼ �PN, we can again define the disjoining pressure as was shown in Eq. (5.61). We see that

introducing the disjoining pressure for a film of variable thickness bears no difficulties in this case. If

phase b is a fluid phase of uniform pressure, Eq. (5.74) leads to the absurd conclusion of the

independence of the disjoining pressure on the film thickness. This only means that the wedge shape

is impossible for a free film. However, the wedge-shaped film is quite realizable inside a rigid solid

(Fig. 17), when Pb in Eq. (5.74) should be interpreted as the surface local pressure created by internal

stresses in the solid (not included into the element tensions). At every surface point, these internal stresses
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counterbalance the disjoining pressure and, of course, are dependent on the location on the surface (on the

coordinate r).

The cylindrical coordinates are also natural for a simple case when a film itself is of the shape of a

circular cylindrical surface. The dividing surfaces are also cylindrical in this case (with the radii

0 < R10 < 1, R20 = 1). The coordinates are chosen as u1 = w, u2 = z, u3 = r, and the Lame coefficients

are h1 = r, h2 = 1, h3 = 1. Correspondingly, Eq. (5.72) takes the form

Pa � Pb ¼ gf
11

R10

þ ½E33ðraÞ þ Pa� r
a

R10

; (5.75)

By choosing ra in the middle of the film (ra = R10 � H/2), Eq. (5.75) can be written as

Pa � Pb ¼ g0
11

R10

� ½P0
N � Pa� 1 � H

2R10

� �
; (5.76)

where H is the distance between the dividing surfaces of the film (the film thickness),

P0
N � � E33ðra ¼ R10 � H=2Þ, and g0

11 � gf
11ðra ¼ R10 � H=2Þ.A similar formulation can be given

for a spherical film when R10 = R20 = R0 and gf
11 ¼ gf

22 ¼ gf . The spherical coordinates are u1 = u,
u2 = w, and u3 = r. Correspondingly, h1 = r, h2 = r sin u, and h3 = 1. Then from Eq. (5.72) we have

Pa � Pb ¼ 2gf

R0

þ ½E33ðraÞ þ Pa� r
a2

R2
0

(5.77)

or

Pa � Pb ¼ 2g0

R0

� ½P0
N � Pa� 1 � H

2R0

� �2

(5.78)

where P0
N � � E33ðra ¼ R0 � H=2Þ and g0 � gfðra ¼ R10 � H=2Þ, the superscript ‘‘0’’ referring to the

middle spherical surface inside the film.

For a wetting film of uniform thickness on a cylindrical or spherical solid body of radius Rn, we can

choose coordinate ua3 at the solid surface by setting ra ¼ Rn. As a result, we obtain from Eqs. (5.75) and

(5.77)

Pa � Pb ¼ gf
11

R10

� ½Ps
N � Pa� Rn

R10

; (5.79)

Pa � Pb ¼ 2gf

R0

� ½Ps
N � Pa�R

2
n

R2
0

; (5.80)

where Ps
N � � E33ðRnÞ is the normal pressure on the solid surface. According to Eq. (5.61), the

difference Ps
N � Pa in Eqs. (5.79) and (5.80) has a meaning of the film disjoining pressure. Eqs. (5.79)

and (5.80) are important in the thermodynamics of heterogeneous nucleation on cylindrical or spherical

wettable solid particles [153].

The above formulas are of general character and applicable to arbitrary capillary objects. Indeed, the

interfacial layers can overlap not only in thin films, but also in thin threads and filaments, small drops and

solid particles, etc. In other words, the interfacial layers attain the middle of an object, and, therefore, the

interfacial element under consideration should be reckoned from an axial or central point. This means
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that, when applying Eqs. (5.75) and (5.77) to compact continuous bodies, we have to set ra = 0. Then the

term with disjoining pressure disappears from the mechanical equilibrium condition to return to the

classical Laplace equation even for very small capillary objects (with no bulk phase inside). Thus, we

come to the conclusion that the significance of disjoining pressure is a distinctive feature of thin films.

5.3.2. Transitional zone of a wetting film

Fig. 18 shows a fragment of the transitional zone between a meniscus and a thin wetting film on a rigid

flat solid surface. The subject discussed is the mechanical equilibrium condition for the upper surface

(ab) of the transitional zone. Choosing an element to which Eq. (5.72) refers, it is convenient to take the

coordinate ua3 on the solid surface (ag) to refer the whole film interior to the film surface layer ab. Then

�E33ðua3 Þ acquires the meaning of the normal pressure Ps
N on the solid surface. In accordance with

Eq. (5.72), we have

Pa � Pb ¼ gf
11

R10

þ gf
22

R20

� ½Ps
N � Pa� h1ðua3 Þh2ðua3 Þ

h10h20

: (5.81)

Since the solid surface is flat, the contribution of capillary pressure vanishes, so that the only cause of a

difference between Ps
N and Pa is the overlapping of the opposite interfacial layers of the film. Hence we

may term the difference Ps
N � Pa as a local disjoining pressure

Pðua1 ; ua2 Þ�Ps
N � Pa: (5.82)

In this definition, it is shown that the local disjoining pressure depends on the longitudinal coordinates,

similarly to all other quantities on the right-hand side of Eq. (5.72). Using (5.82), Eq. (5.72) becomes

Pa � Pb ¼ gf
11

R10

þ gf
22

R20

�P
h1ðua3 Þh2ðua3 Þ

h10h20

: (5.83)

In the particular case of a cylindrical dividing surface (R20 = 1, h2 = 1), the condition expressed in

Eq. (5.83) is reduced to

Pa � Pb ¼ gf
11

R10

�P
h1ðua3 Þ
h10

(5.84)

Comparing Figs. 7 and 18, it is seen that the film surface curvature in Fig. 18 is negative. For this

reason, it is convenient to write Eqs. (5.83) and (5.84) in a general form as

Pb � Pa ¼ Pc þPL (5.85)
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where Pc is the capillary pressure and L is the Lame coefficient ratio

L� h1ðua3 Þh2ðua3 Þ
h10h20

: (5.86)

The explicit expressions for L exist only for simple coordinate systems as we used above. In the

general case, the Lame coefficient ratio can be evaluated with the aid of Eq. (3.6). Subsequently applying

Eq. (3.6) to h1 and h2 with the integration from u30 to ua3 and putting the results in Eq. (5.86), we obtain

L ¼ exp 2

Z ua
3

u30

du3h3ðu3Þcðu3Þ
� �

; (5.87)

where cðu3Þ� ½c1ðu3Þ þ c2ðu3Þ�=2 is the local mean curvature of the coordinate surface u1 � u2.

Applying the mean-value theorem and putting h3du3 = dl3, we rewrite Eq. (5.87) as

L ¼ expð2c̄Dl3Þ; (5.88)

where c̄ is the averaged value of c(u3) andDl3 is the length of the segment of the coordinate line 3 between

u30 and ua3 (the curvilinear ‘‘thickness’’ of the film, Fig. 18). For a thin film whose real local thickness H is

considerably smaller than any of the principal curvature radii of a dividing surface, we have c̄Dl3 � 1,

c̄ � c, and, naturally, Dl3 � H. As a consequence, Eq. (5.88) is represented in an approximate form

L � 1 þ 2cH: (5.89)

It is valid L � 1 at the negative mean curvature of a film (as a reminder, we have c < 0 since the curvature

centre is located on the side of phase a).

Assuming isotropy of surface tension, Eq. (5.85) can be written as

Pb � Pa ¼ �2gfcþPL: (5.90)

With L = 1 Eq. (5.90) corresponds to Derjaguin’s Eq. (5.62), except that Derjaguin treated P as the

disjoining pressure of a flat film of an appropriate thickness. As was already mentioned above, the cosine

of the local slope angle was introduced, instead of L, in some versions of Eq. (5.62) [142,149] for the case

when the disjoining pressure was defined with respect to the normal to the horizontal plane, but not to the

inclined film surface. Such inconsistency was avoided in [150–152] by using curvilinear coordinates. As

a result, the disjoining pressure acts along the normal to both the above film surfaces, so that equating the

Lame coefficient ratio L to the above cosine looks problematic. It is also of note that using the Cartesian

coordinates (as a unique case related to the use of the cosine) has one more undesirable consequence: the

capillary part of Eq. (5.90) becomes inexact. This is related to the fact that the pressure tensor of the

transitional zone becomes non-diagonal in the Cartesian coordinates, which requires returning to the

more general case, Eq. (5.70). As was shown above, L = 1 not only for a flat film, but also for a wedge-

shaped film. Therefore, the condition L � 1 can happen to be not bad approximation for calculations

according to Eq. (5.90) if the film profile is slightly different from the wedge shape and the profile

curvature is sufficiently small.
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6. Equation of state for an adsorbed monolayer

The notion of a monolayer is widely used in modern science. By its origin, a monolayer can be

adsorbed or spread at an interface of any nature between two bulk phases (if one of the phases is a gas, the

other is called a substrate). What is an adsorbed monolayer was beautifully explained by de Boer [154].

When adsorption is localized (including chemisorption), a registered (immobile) monolayer forms. The

non-localized adsorption results in an mobile monolayer. The transition between these states was

analyzed by Halsey [83]. He also raised the question about the influence of an adsorbed monolayer on g
(the mechanical surface tension) and s (the thermodynamic surface tension in our terminology) for a

solid surface when g 6¼ s. The molecules of a mobile monolayer move freely along the surface and create

the two-dimensional pressure pm, which Halsey defined as s0 � s, the subscript 0 referring to the bare

surface (still not covered with a monolayer). With this definition, we can rewrite the Gibbs adsorption

Eq. (3.82) as

dpm ¼ s̄ dT þ
X
i

G i dmi: (6.1)

Similarly to Eq. (3.82), Eq. (6.1) is valid both for liquid and rigid solid substrates.

The relation of the two-dimensional pressure to other parameters of a mobile monolayer (the area, the

number of molecules of each species, and temperature) is established by an equation of state that is often

called a two-dimensional equation of state. We understand it as an equation relating only interfacial

quantities to each other. The adsorption isotherm equations relating interfacial and bulk quantities make

another class of thermodynamic relationships, which we here exclude from consideration with a note that

any such relationship can be easily derived from the Gibbs adsorption equation if the equation of state is

known. The latter itself cannot be obtained from thermodynamics: either statistical mechanics or an

empirical approach is needed.

The history of a two-dimensional equation of state is considerably shorter than that of a three-

dimensional one. Nevertheless, the list of equations proposed is long enough, which mirrors

the variety of attractive and repulsive forces combined in monolayers of various nature. In

addition, the degree of rigor and accuracy divides equations and also increases their number. We

here present a novel thermodynamic approach to the equation-of-state theory [155–160] that

concentrates on the short-range repulsive part of an equation of state and, therefore, is applicable

to any sort of the monolayer particles (molecules, ions, or even nanoparticles) and their mixtures.

Constructing the hierarchy of approximations, we will not only derive new equations of state, but also

reproduce most important earlier equations (including classical ones). For this reason, we do not give a

survey of the state of the art in the field; some previous results will be obtained in the course of

derivation.

6.1. Novel approach to the equation-of-state theory

Some distinctive features of the novel approach can be formulated as follows. (a) Three-dimensional

aspects of a monolayer (such as orientation of anisometric particles) are taken into account. The theory is

generally based on three-dimensional thermodynamic equations. (b) Ockham’s razor (the principle of

maximum simplicity) is in action to avoid plurality. This means that, when having multiple solutions, we

choose the simplest of them. It is possible to meet ten or more fitting parameters in modern equations of
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state. We use a single fitting parameter if any. (c) The approach novelty is attributed to the new definition

and use of the excluded area and the exclusion factor that is a main parameter of the theory. To understand

these quantities, a preliminary survey of other geometrical characteristics of monolayer particles is

needed.

6.1.1. Geometrical characteristics of monolayer particles

The simplest geometrical characteristic of a monolayer particle is its parking area. Accounting for the

Brownian rotation, we can consider monolayer particles as having a disk shape (in the case of the absence

of rotation, one can speak about an effective disk shape of a particle) to write

ai0 ¼ pr2
i ; (6.2)

where ai0 is the parking area of a particle of the ith species and ri is the particle radius. Let Gi be the

surface particle density (the monolayer particle number per unit area coinciding with adsorption for a

non-soluble and non-volatile monolayer), G the total surface particle density for all species, and xi the

mole fraction of particles of the ith species:

xi�
G i

G
; G �

X
i

G i: (6.3)

Using Eq. (6.3), we can define the average parking area a0 in case of a mixture as

a0 �
X
i

xiai0: (6.4)

A minimal area per a particle of the ith sort in a densest monolayer (under infinitely large two-

dimensional pressure) is designated as ai1. Generally, ai0 and ai1 are different. They can coincide only in

the model of soft disks when particles are capable of two-dimensional straining at maintaining their area.

However, ai1 is always larger than ai0 in the model of hard disks, the ratio ai1/ai0 depending on the

packing type. For a single-species monolayer, ai1/ai0 = 4/p for the square packing and ai1/ai0 = 31/2(2/

p) for the hexagonal packing. However, the models of soft and hard disks are insufficient for monolayers

with anisometric particles where both the areas are dependent of the particle orientation. For a

multicomponent monolayer, we can, by analogy with Eq. (6.4), also introduce the average minimal

area per a particle as

a1�
X
i

xiai1: (6.5)

Interestingly, the average quantities a0 and a1 are closer to each other than the corresponding areas for

individual species. The wider the size distribution, the closer are a0 and a1 because smaller particles fill

cavities between large particles. We illustrate this by the example of the square packing of hard disks

(Fig. 19). For disks of one size, a0/a1 = p/4 � 0.7854. If we now add disks of smaller size (component

2), the geometrical relationships hold

a0

a1
¼ pð1 þ l2Þ

4
ð0 � l � 21=2 � 1Þ; a0

a1
¼ pð1 þ l2Þ

2ð1 þ lÞ2
ð21=2 � 1 � l � 1Þ;
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where l � r2/r1. The value l = 21/2 – 1 corresponds to the case when the second disks exactly fit the

cavities in the square lattice of the first disks. In this case, the ratio a0/a1 = 0.92 attains its maximum, but

also remains larger than 0.7854 at all other values of l.

The above two areas are related to the manner of giving the amount of matter in a surface monolayer.

Area ai0 participates in formulating the surface packing fraction of the ith species wi and the total packing

fraction of all species w as

’i�G iai0; ’�
X
i

G iai0 ¼ Ga0: (6.6)

Area ai1 stands in the definition of the degree of surface coverage for the ith species ui and for all species

together u:

ui�G iai1; u�
X
i

G iai1 ¼ Ga1: (6.7)

In view of the said above, a difference between w and u can be not significant for a mixture.

The parking area characterizes the particle dimensions in the monolayer plane. However, every

particle has also a linear dimension in the third direction (normal to the monolayer plane). Since liquid

substrates are always horizontal, this linear dimension is often termed as the particle height. Accepting

this terminology (although a solid substrate can be not horizontal) and designating the particle height for

the ith species as hi, we can introduce the average monolayer height (thickness) as

h�
X
i

xihi: (6.8)

We now pass to the definition of the partial particle area ai in a mixed monolayer. Introducing partial

quantities is a standard operation in thermodynamics. We can imagine that we add an additional particle

to a monolayer at given two-dimensional pressure and area. This leads to a change of pressure, and, to

return pressure to its original value, we have to change the monolayer area. The resulting area increment
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is just the partial particle area and is defined mathematically as

ai�
@A

@Ni

� �
T ;pm;Nj 6¼ i

; (6.9)

where Ni is the number of particles of sort i in the monolayer. Quantity ai is always larger (for a gaseous

monolayer, incomparably larger) than ai0 or ai1. The average partial particle area in a multicomponent

monolayer is defined as

a�
X
i

xiai: (6.10)

Defining the partial particle area, we implied that a particle added is identical with the monolayer

particles. In particular, the particle added is involved in thermal motion and contributes both to the kinetic

and force parts of the pressure. Let us now assume that a particle is inserted to a certain position on the

surface, and the particle center of mass is at rest. Such a particle do not contribute to the kinetic part of

pressure, but influences the two-dimensional pressure in two different ways. First, the particle occupies a

certain place on the surface to create an excluded area. Second, the particle interacts with other (moving)

particles of the monolayer: the attraction decreases the pressure, while the repulsion increases it.

Thermodynamically, we may regard particles with resting center of mass as a separate component. By

analogy with Eq. (6.9), we can define the partial particle area for resting particles of sort i as

a0
i �

@A

@N0
i

� �
T ;pm;Ni;N

0
j 6¼ i

; (6.11)

where the superscript 0 denotes that the center of mass of a particle is at rest. We also introduce the

average value of a0
i in a mixed monolayer

a0 �
X
i

xia
0
i : (6.12)

Of course, a0 differs from a, but both the quantities can be of any sign depending on the counterbalance

of attractive and repulsive forces. To simplify the situation, we introduce one more quantity, the excluded

area aex
i for particles of sort i, that is a0

i in the absence of long-range forces with accounting for only short-

range repulsive forces specifying the particle size. In other words, the excluded area is defined as the

partial area of a resting particle in the absence of long-range forces:

aex
i � a0

i ðno long-range forcesÞ: (6.13)

The excluded area is evident to be always positive. As usual, we also define the average excluded area aex

in a mixed monolayer

aex ¼
X
i

xia
ex
i : (6.14)

The excluded area is a central quantity of the approach to be presented below. So we now proceed to the

analysis of its properties.
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6.1.2. Excluded area and exclusion factor

We begin with the consideration of a rarified gaseous monolayer consisting of discrete particles and

not containing clusters. If the particle number is given, the two-dimensional pressure is determined by the

surface area where the particle mass centers move. The excluded area created by a resting particle is

evident to be an area inaccessible for the centers of mass of moving particles. Then a resting particle of

radius ri creates, for a moving particle of radius rk, the excluded area p(ri + rk)
2 (Fig. 20). Denoting it aex

ik ,

we have

aex
ik ¼ ða1=2

i0 þ a
1=2
k0 Þ2; (6.15)

where ai0 and ak0 are the parking areas of particles of sorts i and k, respectively, defined according to

Eq. (6.2). As is seen from Eq. (6.15), the excluded area depends on the sizes of both the particles. The

frequency of appearance of particles of various species near the given particle of sort i is determined by

the particle mole fractions xk (see Eq. (6.3)). On average, a particle of sort i creates the excluded area

aex
i ¼

X
k

xka
ex
ik ¼

X
k

xkða1=2
i0 þ a

1=2
k0 Þ2: (6.16)

By averaging this value over all species according to Eq. (6.14), we obtain the average excluded area

created by a particle of a multicomponent gaseous mixture

aex ¼
X
i

xia
ex
i ¼

X
i;k

xixkða1=2
i0 þ a

1=2
k0 Þ2: (6.17)

For the sake of simplicity, it is convenient to formulate equations in a dimensionless form. The

exclusion factor is a dimensionless representation of the excluded area as its ratio to the parking area for a

given sort of particles

fi�
aex
i

ai0
(6.18)
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and, on average,

f � aex

a0

: (6.19)

From Eqs. (6.3), (6.6), (6.14), (6.18), and (6.19), it follows that averaging f i proceeds with respect to the

packing fraction:

f ¼
X
i

’i fi
’

: (6.20)

Eqs. (6.4), (6.17), and (6.19) yield the exclusion factor for a rarified gaseous monolayer f0 (subscript 0

means the low concentration limit)

f0 ¼
P

i;k xixkða
1=2
i0 þ a

1=2
k0 Þ2P

i xiai0
: (6.21)

If the particles of all species possess equal parking areas (ai0 = a0 for all i), Eq. (6.21) yields f0 = 4. In the

general case, the exclusion factor, even in a gaseous limit, is a function of the parking area ratios and

composition. We consider a binary gaseous monolayer for the sake of illustration. Setting x1 = x,

x2 = 1 � x, and l2 � a20/a10 (l is the ratio of linear dimensions) reduces Eq. (6.21) to the form

f0 ¼ 4x2 þ 2xð1 � xÞð1 þ lÞ2 þ 4ð1 � xÞ2l2

xþ ð1 � xÞl2
: (6.22)

Fig. 21 shows the plot f0(x) for possible size ratios within the range 0 � l � 1 (the particles of the first

species are assumed to be larger). The exclusion factor is seen to be smaller for a mixture than for the

individual species, which leads to a minimum whose depth and location depend on the particle size ratio.

As the size ratio becomes more different from unity, the minimum increases its depth and shifts to the side

of the species with larger particles. In any case, however, the exclusion factor remains within the narrow

range 4 � f0 � 2.
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We now turn to a denser state of a monolayer with developing clustering. Let us imagine that not a

single particle but a cluster containing n particles of various species is inserted in a monolayer to a certain

localized position. If ac is the average area per particle in the cluster, the cluster will occupy the area nac

to have the radius R = (nac/p)1/2. In accordance with Fig. 20, the cluster will create, with respect to a

mobile particle of the kth species, the excluded area (cf. Eq. (6.15))

Aex
k ¼ pðRþ rkÞ2 ¼ ½ðnacÞ1=2 þ a

1=2
k0 �2: (6.23)

The average excluded area created by the cluster is

Aex ¼
X
k

xk½ðnacÞ1=2 þ a
1=2
k0 �2 (6.24)

or, when reckoning per one cluster particle,

aex ¼ Aex

n
¼
X
k

xk a1=2
c þ ak0

n

	 
1=2
� �2

: (6.25)

Correspondingly, the exclusion factor is determined as

f ¼ aex

a0

¼
X
k

xk
ac

a0

� �1=2

þ ak0

na0

� �1=2
" #2

; (6.26)

The analysis of Eq. (6.26) is complicated by the fact that the area ac is itself dependent on n (i.e. on the

cluster size) due to the boundary effects. For a discrete particle ac = a0. In a cluster, ac is always larger

than a0, but diminishes with the cluster growth unless attains its minimal (for a given cluster structure)

value a1 at n !1. The limiting value for the exclusion factor is

f1 ¼ a1
a0

: (6.27)

For a monolayer of a single species, the condition f1 = 1 is possible only in the model of soft particles

(disks). As for a mixed monolayer, approaching the exclusion factor to unity can result from the favor size

ratios when smaller particles fill in interspaces between larger particles.

Area a1 can also be used for introducing the alternative exclusion factor

g� aex

a1
¼ fa0

a1
; (6.28)

which tends exactly to unity in the densest limit. Using the definitions of w and u, Eqs. (6.6) and (6.7), we

also can write

’ f ¼ ug ¼ Gaex: (6.29)

The couple w and f is convenient for description beginning from a gaseous state, while the couple u and g

is more appropriate for dense states. However, both the variants of description are completely equivalent.

Since the value of a1 depends on the packing type, the restrictions for f and g should be written
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separately for every type of packing. As an example, we have for the system of hard disks of one size

4� f � 4

p
� 1:273; p� g� 1 ðsquare packingÞ; (6.30)

4� f � 31=2 2

p

� �
� 1:103;

2p

31=2
� 3:628� g� 1 ðhexagonal packingÞ: (6.31)

Although some information on the functions f(w) and g(u) can be obtained from the known virial

expansions, the problem of finding a general explicit form for these functions has not been solved up to

the present. However, we established both the functions to be capable of changing only within a narrow

interval as the two-dimensional pressure changes over the whole unlimited range. This allows us to hope

that even simple but reasonable approximations for these functions can produce acceptable results. We

will see below that, indeed, the exclusion factor turns to be an effective tool for constructing an equation

of state.

6.1.3. Master equation

Since an equation of state can always be represented as a set of isotherms, we will deal, for the sake of

simplicity, with the isothermal variant of the Gibbs adsorption Eq. (6.1)

dpm ¼
X
i

G i dmi: (6.32)

Deviating from the common practice, we refer chemical potentials in Eq. (6.32) to an interface, which

immediately allows us to treat Eq. (6.32) as an implicit differential form of an equation of state. Since the

adsorption of a substrate is zero in the Gibbs adsorption equation, Eq. (6.32) contains only the adsorptions

of the monolayer species. Assuming them to be non-soluble and non-volatile secures the coincidence of

the adsorptions and real amounts of the species per unit monolayer area.

Considering a monolayer as a three-dimensional object, we use the standard expression of statistical

mechanics for the chemical potential of the ith species (cf. (4.46))

mi ¼ m0
i þ kBT lnðciLiÞ; (6.33)

where m0
i is the chemical potential of a particle with resting center of mass (taken with account of all

interactions in the system) and ci is the local concentration (the particle number per unit volume). The

resting particles to which chemical potential m0
i refers, can be formally treated as a separate species.

At given temperature and composition, chemical potentials are dependent on pressure. We assume the

outer pressure to be constant, so that only the dependence on the two-dimensional pressure remains. The

standard thermodynamic relationship is

dmi ¼ ai dpm; (6.34)

where ai is the partial area of a particle of sort i given by Eq. (6.9). Applying Eq. (6.34) to a resting

particle, we have

dm0
i ¼ a0

i dpm; (6.35)
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where a0
i is the partial area of a resting particle given by Eq. (6.11). The three-dimensional local

concentration ci can be expressed as

ci ¼
G i

hi
; (6.36)

where hi is the monolayer thickness corresponding to the height of particles of sort i (evidently, particles

of different sorts can possess different heights).

Differentiating now Eq. (6.33) and accounting for Eqs. (6.35) and (6.36), we obtain

dmi ¼ a0
i dpm þ kBT d lnG i � kBTd ln hi: (6.37)

Putting now (6.37) in (6.32), we arrive at the equation

ð1 � Ga0Þdpm ¼ kBT dG � kBTc dh; (6.38)

where G, h, and a0 are defined in Eqs. (6.3), (6.8), and (6.12), respectively, and c�
P

i ci is the total

concentration of all species. The last term in Eq. (6.38) accounts for the effect of orientation that appears

only for anisometric particles and in sufficiently dense monolayers. Apparently, the average monolayer

thickness h is itself dependent on pm and G. For this reason, Eq. (6.38) can be written as

dpm

dG
¼ kBTð1 � cdh=dG Þ

1 � Ga0
: (6.39)

The integration of Eq. (6.39) is possible when the behavior of the partial particle area a0 is known.

However, as was already stated above, even the sign of a0 is uncertain. At the same time, the direct

contribution of long-range forces to pressure has already been estimated and known in many cases. This

suggests integrating Eq. (6.39) in the absence of long-range forces and adding the contribution of long-

range forces (as pl where subscript l symbolizes long-range forces) to the final result of integration. In the

course of such integration, area a0 automatically changes to the excluded area aex, and the resulting

equation is

pm ¼
Z G

0

kBTð1 � cdh=dG Þ
1 � Gaex

dG þ pl (6.40)

The integration in (6.40) is carried out at constant temperature and composition. A particular expression

for pl depends on the kind of interparticle interaction. For example, for van der Waals forces

pl ¼ �
X
i;k

aikG iG k; (6.41)

where aik is the constant of interaction of particles of sorts i and k. Eq. (6.40) is valid for a monolayer of

any nature and can be termed as a master equation for its significance and capability of generating various

equations of state.

The master Eq. (6.40) can be rearranged to two equivalent dimensionless forms. Using the average

parking area a0 and the exclusion factor f according to (6.19), the first dimensionless form of Eq. (6.40) is

p̃ ¼
Z ’

0

1 � ca0 dh=d’

1 � f’
d’þ p̃l; (6.42)

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239 221



where p̃�pma0=kBT is the dimensionless two-dimensional pressure and p̃l its long-range part.

Correspondingly, Eq. (6.41) changes to the form

p̃l ¼ �
X
i;k

ãik’i’k; (6.43)

where ãik �aika0=kBTai0ak0 is the dimensionless interaction constant. Using now the average minimal

area a1 and the exclusion factor g, we obtain the second dimensionless form of Eq. (6.40) as

p̃0 ¼
Z u

0

1 � d ln h=d ln u

1 � gu
du þ p̃0

l; (6.44)

where p̃0 �pma1=kBT is the alternative dimensionless form for the two-dimensional pressure and p̃0
l its

long-range part. Eq. (6.41) is now transformed to

p̃0
l ¼ �

X
i;k

ã0
ik ui uk; (6.45)

where ã0
ik �aika1=kBTai1ak1 is the other dimensionless form for the interaction constant.

As was already stated above, the derivative dh=d’ is related to a change in the particle orientation. For

the case of symmetrical particles, dh=d’ ¼ 0, and Eqs. (6.42) and (6.44) are reduced to their simplest

forms

p̃ ¼
Z ’

0

d’

1 � f’
þ p̃l; (6.46)

p̃0 ¼
Z u

0

du

1 � gu
þ p̃0

l: (6.47)

Eqs. (6.46) and (6.47) already do not contain a three-dimensional aspect and can be termed as two-

dimensional master equations.

6.1.4. Exclusion factor from the virial equation of state

As is seen from Eqs. (6.46) and (6.47), only the dependence of the exclusion factor on surface

concentration is needed to obtain an equation of state in an explicit form. If, the reverse, an equation of

state is known, Eqs. (6.46) and (6.47) allows finding the dependence of the exclusion factor on surface

concentration. For this purpose, we can use the known virial form of the fluid equation of state, which,

although being incomplete, can give us a general idea of the exclusion factor behavior.

A general form of the virial equation of state is

pm ¼ kBTðG þ B2G
2 þ B3G

3 þ � � � Þ; (6.48)

where Bi are the virial coefficients (B1 = 1). In the case of a mixed monolayer, the virial coefficients are

composed of the partial virial coefficients of individual species Bik, Bijk, etc. The additivity rule reads

B2 ¼
X
i;k

Bikxixk; B3 ¼
X
i; j;k

Bi jkxix jxk; etc: (6.49)
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Proceeding to the dimensionless variables w and u, we can rewrite, alternatively, Eq. (6.48) in two forms

p̃ ¼ ’þ b2’
2 þ b3’

3 þ � � � ; (6.50)

p̃0 ¼ u þ b02 u
2 þ b03 u

3 þ � � � ; (6.51)

where the dimensionless virial coefficients are defined, respectively, as

bi ¼
Bi

ai�1
0

; b0i ¼
Bi

ai�1
1

: (6.52)

Methods of computing the virial coefficients are intensively elaborated in statistical mechanics. The

simplest results refer to a system of hard disks of one size, for which eighth first virial coefficients have

been computed [161,162]. The corresponding values of bi are presented in Table 1 together with the

values of b0i calculated for the square and hexagonal packing. These values can be used for estimating f(w)

and g(u). Let us illustrate this procedure by example of function f(w). Applying Eq. (6.46) to the system of

identical hard disks (i.e. setting p̃0
l ¼ 0) and equating the right-hand sides of Eqs. (6.46) and (6.50), we

obtain

f ¼ dp̃=d’� 1

’ dp̃=d’
¼

P
i� 2 ibi’

i�2

1 þ
P

i� 2 ibi’
i�1

¼ 2b2 þ 3b3’þ � � �
1 þ 2b2’þ � � � : (6.53)

Important relationships follow from Eq. (6.53) in the limit w ! 0:

f0 ¼ 2b2; (6.54)

d f

d’

� �
0

� � k0 ¼ 3b3 � 4b2
2; (6.55)

where k0 is the absolute value of the initial negative slope of the exclusion factor isotherm.

Comparing Eqs. (6.21) and (6.54), we obtain a formula for calculating the dimensionless second virial

coefficient for the system of hard disks of various dimensions

b2 ¼

X
i;k

xixkða1=2
i0 þ a

1=2
k0 Þ2

2
X
i

xiai0
: (6.56)
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Table 1

Eight first virial coefficients for a system of identical hard disks

i bi [162] b0i (square) b0i (hexagonal)

1 1 1 1

2 2 p/2 � 1.57079633 p/31/2 � 1.81379936

3 3.12801775 1.92951861 2.57269148

4 4.25785446 2.062815835 3.17591274

5 5.336897 2.030712 3.610155

6 6.3626 1.90145 3.90329

7 7.351 1.725 4.090

8 8.338 1.537 4.207



Naturally, this formula is known in statistical mechanics, which confirms the validity of Eq. (6.21). The

algorithm of calculating the partial third virial coefficients for a multicomponent system of hard disks

was elaborated by Rowlinson and McQuarrie [163]. Their formula reads

Bi jk ¼
4

3
p2si jsiks jkIðsi j; sik; s jkÞ (6.57)

where si j� ri þ r j, and I(a, b, c) is the following function. If each of quantities a, b, c does not exceed the

sum of the two others, I(a, b, c) is

I ¼ Abc

4pa
þ Bac

4pb
þ Cab

4pc
� Dða2 þ b2 þ c2Þ

4pabc
; (6.58)

where a, b, c can be interpreted geometrically as the sides of a triangle, D being the triangle area and A, B,

C angles opposite to corresponding sides. In other cases, the function I(a, b, c) is defined as

I ¼ ab

4c
ðc� aþ bÞ; etc: (6.59)

Proceeding to a dimensionless form of the third virial coefficient is accomplished as

b3 ¼
P

i; j;k Bi jkxix jxk

ð
P

i xiai0Þ
2

: (6.60)

For a system of identical disks, Eqs. (6.56) and (6.60) yield the values b2 = 2 and b3 = 4(4/3 � 31/2/

p) � 3.128 shown in Table 1. According to Eqs. (6.54) and (6.55), we then obtain f0 ¼ 4 and k0 � 6.616.

Putting now all eight values of bi from Table 1 in Eq. (6.53) with truncated (at i > 8) sums, we can

calculate the initial behavior of the exclusion factor f in more detail. The result is exhibited in Fig. 22 that

shows function f(w) to be decreasing and slightly concave. The above formulas for f can be easily

reformulated for g by replacing ai0 ! ai1, bi! b0i, and w ! u. Qualitatively, the behavior of g(u) (with

g0 = 2p/31/2 for hexagonal packing) is similar to that of f(w) shown in Fig. 22.
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Fig. 22. The plot of f(w) for a system of hard disks according Eq. (6.53) truncated at i = 8 and the virial coefficients values taken

from Table 1.



6.2. Two-dimensional equations of state

The above part of the equation-of-state theory was thermodynamically rigorous and resulted in the

master equation capable of generating equations of state. The particular forms of the master equation,

Eqs. (6.46) and (6.47), are destined for deriving two-dimensional equations of state, to which we now

proceed. Further development will depend on the rational choice of approximations for the exclusion

factor.

6.2.1. Low-density approximations

Looking at Fig. 22, we could omit at once unrealistic assumptions. This, however, would mean missing

some famous and classical equations of state. Therefore, we will begin with simplest assumptions for

historical reason. The zero approximation is evident to be the constancy of the exclusion factor.

Integrating of Eqs. (6.46) and (6.47) at constant f and g yields

p̃ ¼ � lnð1 � f’Þ
f

þ p̃l; (6.61)

p̃0 ¼ � lnð1 � guÞ
g

þ p̃0
l: (6.62)

Applying Eq. (6.61) to the gaseous region and setting f = f0, we obtain

p̃ ¼ � lnð1 � f0’Þ
f0

þ p̃l: (6.63)

For a one-component monolayer ( f0 = 4) and for the van der Waals forces (see Eq. (6.43)), Eq. (6.63)

becomes

p̃ ¼ � lnð1 � 4’Þ
4

� a’2; (6.64)

which is a two-dimensional analog of the Planck equation of state for a monatomic non-ideal gas [164].

Taking a Taylor series expansion for the logarithm, we see that Eq. (6.64) yields correct values for the first

and second virial coefficients (the third one deviates significantly from the known values).

The plot in Fig. 22 suggests that the constancy of the exclusion factor could be a better approximation

for denser states. Turning to Eq. (6.62) and setting g = 1, we have

p̃0 ¼ �lnð1 � uÞ þ p̃0
l (6.65)

For a one-component monolayer, Eq. (6.65) is known as the van Laar equation at p̃0
l ¼ 0 and as the

Frumkin equation at p̃0
l ¼ �au2. The van Laar equation was generalized by Krotov [165] for a mixture of

particles of equal parking areas, while the Frumkin equation was generalized by Fainerman et al. [166]

for a mixed monolayer with van der Waals forces when p̃0
l is given by Eq. (6.45).

For the sake of brevity, we conduct further investigation with Eq. (6.46) only. According to Fig. 22, it is

suggestive that the first approximation should be a linearly decreasing function

f ¼ f0 � k1’; (6.66)
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where k1 is a positive constant. Putting (6.66) in Eq. (6.46) yields

p̃ ¼
Z ’

0

d’

1 � f0’þ k1’2
þ p̃l: (6.67)

Not only the numerical value, but also the mathematical form of a result of integration in (6.67) is

dependent on the choice of constant k1. It is time to switch on Ockham’s razor: we choose the constant as

k1 ¼ f 2
0 =4; for which the result is the simplest:

p̃ ¼ ’

1 � ð f0=2Þ’þ p̃l: (6.68)

Passing to a one-component monolayer f0 = 4 with van der Waals forces, Eq. (6.43), and restoring the

dimensionality, Eq. (6.68) is represented as

pm ¼ kTG

1 � 2a0G
� aG 2 (6.69)

that can be easily recognize as the two-dimensional van der Waals equation (the wrong interpretation of

coefficient 2a0 as an excluded area is also evident). Thus, Eq. (6.68) can be termed the dimensionless

generalized two-dimensional van der Waals equation of state.

Proceeding to the second approximation, we try to account for the concavity of the dependence f(w).

This can be attained in many ways, and the traditional method is using polynomial representation. The

use of a polynomial ratio is a still more general and sensitive method. Starting from Eq. (6.66), the

simplest formula of this method is

f ¼ f0 � k1’

1 þ k2’
; (6.70)

where k2 is a second positive constant. Obviously, constants k1 and k2 should be so chosen as to satisfy the

boundary conditions f = f0 and (df/dw)0 = �k0 at w ! 0. This yields the relationship k1 ¼ k0 � f0k2, so

that only one of the coefficients (let it be k2) can be chosen independently but inside the range k2 � 27/7

(this requirement appears because f cannot be smaller than unity, whereas w cannot be larger than unity).

Putting (6.70) in Eq. (6.46) results in

p̃ ¼
Z ’

0

ð1 þ k2’Þ d’

1 þ ðk2 � f0Þ’þ ðk0 � f0k2Þ’2
þ p̃l: (6.71)

This time Ockham’s razor dictates k2 ¼ 2k
1=2
0 � f0 (this value changes the denominator of the integrand

to the square of a sum). After performing the integration in (6.71), we arrive at the equation of state

p̃ ¼ 2bþ f0

b2
lnð1 þ b’Þ � bþ f0

b

’

1 þ b’
þ p̃l; (6.72)

where a constant b� k
1=2
0 � f0 has been introduced for the sake of convenience.

Eq. (6.72) resembles a combination of the dimensionless two-dimensional Planck and van der Waals

equations of state and, naturally, is as simple as both these classical equations. However, Eq. (6.72) is

more accurate and exactly reproduces three first virial coefficients. For a monolayer containing a single
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species, we have f0 = 4 and b � �1.428, which imparts to Eq. (6.72) a numerical form

p̃ ¼ 0:561 lnð1 � 1:428’Þ þ 1:801’=ð1 � 1:428’Þ þ p̃l: (6.73)

For the case of van der Waals forces, Eq. (6.73) becomes

p̃ ¼ 0:561 lnð1 � 1:428’Þ þ 1:801’=ð1 � 1:428’Þ � ã’2 (6.74)

and permits us the direct comparison with the two-dimensional Planck and van der Waals equations. The

last attractive term in (6.74) contributes only to the second virial coefficient. The other virial coefficients

should be the same as in a system of hard disks, which makes possible to estimate the accuracy of

Eq. (6.74) using Table 1. The result follows: three first virial coefficients are reproduced exactly, the

fourth is overestimated only by 9% and the fifth by 28%. Thus, Eq. (6.74) is much more accurate than the

van der Waals equation. In addition, Eq. (6.74) comprises a wider range of validity (0 < w < 0.7) as

compared with the van der Waals equation (0 < w < 0.5).

For a long time, just the van der Waals equation was used for describing two-dimensional

condensation and critical phenomena (see, e.g. [154]). For comparison, it is of interest to determine

the critical constants of Eq. (6.74). Equating the first and second derivatives of the right-hand side of

Eq. (6.74) with respect to w to zero, we obtain wF = 0.202, ãc ¼ 6:019, and p̃c ¼ 0:075, where subscript

‘‘c’’ indicates the critical state. Other important parameters are the critical compressibility factor Zc ¼
p̃c=’c and the Boyle point as a temperature where the second virial coefficient becomes zero. Since the

second virial coefficient (identical for all the three above approximations) is 2 � ã, we obtain ãB ¼ 2 for

the Boyle point. Table 2 well exhibits how the equation of state is improved when ascending in the

hierarchy of approximations.

When Eq. (6.72) is applied to a mixed monolayer, its coefficients are not constant any more. They

depend on the size ratios of particles and should be calculated separately for every particular mixed

monolayer. Using Eqs. (6.54) and (6.55), we can express the parameter b in Eq. (6.72) via the second and

third virial coefficients:

b ¼ k
1=2
0 � f0 ¼ ð4b2

2 � 3b3Þ1=2 � 2b2: (6.75)

In their turn, the virial coefficients for a mixed monolayer are calculated from their partial virial

coefficients as was shown in the preceding section. The computational scheme including virial

coefficients seems to be most reliable since the method of calculating partial virial coefficients of

mixtures are widely spread and permanently improved. Concluding this section, it should be noted that

the above gaseous equations of state were deduced without a fitting procedure and can be calculated pure

theoretically. To consider more general equations, we have to proceed to methods including a fitting

procedure, although to a minimum extent.

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239 227

Table 2

Comparison of the zero (Planck equation), first (van der Waals equation), and second (Eq. (6.74)) approximations for the

equation of state (m is the number of exact virial coefficients)

Equation Range m p̃c wc ãc Zc

Planck 0 < w < 0.25 2 0.0483 0.1250 8 0.3864

van der Waals 0 < w < 0.5 2 0.0625 0.1667 6.750 0.3749

(6.74) 0 < w < 0.7 3 0.0748 0.2022 6.019 0.3699



6.2.2. Equations for the entire density range

Using a set of virial coefficients as a reference system is evident to be suitable only for gaseous

equations. Proceeding to dense monolayers, we need another reference system, which can be a database

created by numerical computer experiment (Monte Carlo and molecular dynamics). The most appro-

priate and reliable is the high-precision (with accuracy 0.01%) database (consisting of 10 points) by

Erpenbeck and Luban [167] for the system of hard disks (we reproduce it below). Therefore, we will use

this database as a reference system in subsequent consideration. That fact that not only accuracy, but also

the accessible range rapidly increase in the approximation hierarchy (see Table 2), suggests an idea that

the analysis of still higher approximations can lead to an equation of state for the entire density

(concentration) range. So we continue constructing the approximation hierarchy by subsequent adding

the higher terms (k3w
2, k4w

3, k5w
4, etc.) to the numerator of Eq. (6.70), the denominator being maintained.

At each step, after putting the resulting expression for f in Eq. (6.46), all the constants ki are so chosen as

to reduce the integral to its simplest form (again Ockham’s razor) with a single parameter k. In this way, a

general formula for the equation of state in the nth approximation (n � 3) was deduced [159,160]

p̃ðnÞ ¼ 1

ð1 � k’Þn�1
’þ f0 � 2kðn� 1Þ

ðn� 1Þðn� 2Þk2
½ð1 � k’Þn�1 � 1 þ ðn� 1Þk’�

� �
þ p̃l: (6.76)

Eq. (6.76) is valid for an arbitrary number of species in a monolayer and is simplified only by setting

f0 = 4 in the case of a single species. It is easy to verify at p̃l ¼ 0 that Eq. (6.76) yields a correct value for

the second virial coefficient irrespective of a particular value of parameter k. This secures the

applicability of Eq. (6.76) to a two-dimensional gas at any choice of k that can be converted into a

fitting parameter for the entire density range. Below, we illustrate such a procedure for the system of hard

disks of one size.

Let us begin with applying the computer simulation database for estimating the accuracy of the above

gaseous equations. For the system of identical hard disks ( f0 = 4, p̃l ¼ 0), Eqs. (6.63), (6.68), and (6.73)

becomes

p̃ð0Þ ¼ � lnð1 � 4’Þ
4

; (6.77)

p̃ð1Þ ¼ ’

1 � 2’
; (6.78)

p̃ð2Þ ¼ 0:561 lnð1 � 1:428’Þ þ 1:801’

1 � 1:428’
: (6.79)

We join to them the van Laar equation (Eq. (6.65) at p̃l ¼ 0) that is not gaseous but belongs to the zero

approximation (denoted as 00). In terms of w and for the densest (hexagonal) packing, it reads

p̃ð00Þ ¼ � lnð1 � 1:103’Þ
1:103

: (6.80)

We also try to apply the fitting procedure to Eq. (6.72). The matter is that, similarly to Eq. (6.76),

Eq. (6.72) at p̃l ¼ 0 yields a correct value for the second virial coefficient irrespective of a particular
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value of parameter b that, therefore, can be replaced by the fitting parameter k to give

p̃ð2Þ ¼ 4 � 2k

k2
lnð1 � k’Þ þ 4 � k

k
� ’

1 � k’
: (6.81)

Eq. (6.81) fits the standard database [167] with k � 1.2258 and the coefficient of determination

R2 = 0.998154 (the nearness of R2 to unity determines the fitting quality). With this value of k,

Eq. (6.81) takes a numerical form (we denote this approximation as 20).

p̃ð20Þ ¼ 1:0305 lnð1 � 1:2258’Þ þ 2:2632’

1 � 1:2258’
: (6.82)

Since the coefficient of the logarithm turns to be very close to unity, we may drop it in Eq. (6.81) and

repeat the fitting procedure, which yields

p̃ð20Þ ¼ lnð1 � 1:214’Þ þ 2:295’

1 � 1:214’
(6.83)

with k = 1.21397344 � 1.214 and R2 = 0.999047. The last number shows that Eq. (6.83) is even more

accurate than Eq. (6.82). Fig. 23 exhibits the isotherms of the dimensionless two-dimensional pressure

according to Eqs. (6.77)–(6.80) and (6.83) (approximations 0, 00, 1, 2, and 20) as compared with the

standard database. Naturally, Eq. (6.83) is the best for dense states (with deviations not more than 3.5%)

but deviates by 7.7% in the point with the lowest density. This stimulates us to consider approximations of

higher orders.

Proceeding to Eq. (6.76), we set p̃l ¼ 0 to apply Eq. (6.76) to the system of hard disks. For the sake of

comparison with known equations of state, we also introduce the compressibility factor (whose critical

value was already used above)

Z� Pa

kBT
¼ P̃

’
: (6.84)
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Fig. 23. The isotherms of the dimensionless two-dimensional pressure of the system of hard disks in the zero [0 is Eq. (6.77) and

00 is Eq. (6.80)], first [Eq. (6.78)], and second [2 is Eq. (6.79) and 20 is Eq. (6.83)] approximations. Points are the data of computer

simulation [168].



Then Eq. (6.76) is replaced by the equation

ZðnÞ ¼ 1

ð1 � k’Þn�1
1 þ 4 � 2kðn� 1Þ

ðn� 1Þðn� 2Þk2’
½ð1 � k’Þn�1 � 1 þ ðn� 1Þk’�

� �
ðn� 3Þ (6.85)

Taking particular values for n, we find corresponding k-values by the computer fitting procedure. Table 3

shows that the maximum accuracy (with deviations not more than 0.46% from the standard database) is

attained in the fourth approximation). Passing to higher approximations, the accuracy becomes worse as a

result of using only a single fitting parameter.

Let us have a look at the equations themselves in the third and fourth approximations. At n = 3

Eq. (6.85) becomes

Zð3Þ ¼ 1 þ 2ð1 � kÞ’
ð1 � k’Þ2

: (6.86)

If k = 1, Eq. (6.86) reproduces the known equation of the scaled particle theory [168–170]

Z ¼ ð1 � ’Þ�2; (6.87)

which simultaneously is a two-dimensional analog of the Carnahan–Starling equation of state for hard

spheres [171]. As it follows from Table 3, the coefficient k is indeed close to unity, which gives evidence

of a high accuracy of Eq. (6.87). Therefore, one can say that the scaled-particle-theory equation of state

corresponds to the third approximation of the excluded area theory. We can simplify the form of

Eq. (6.86) by neglecting the second term in the numerator and, for compensation, by repeated finding a k-

value form the fitting procedure. The resulting equation (we denote this approximation as 30)

Zð30Þ ¼ ð1 � k’Þ�2
(6.88)

turns to be even more accurate than Eq. (6.86) and the new value of k still closer to unity (cf.

approximations 3 and 30 in Table 3).

Eq. (6.85) in the fourth approximation is

Zð4Þ ¼ 1 � ð3k � 2Þ’þ kðk � 2=3Þ’2

ð1 � k’Þ3
: (6.89)
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Table 3

The values of the fitting parameter k and the coefficient of determination R2 for various approximations of Eq. (6.85) (n � 3) and

some other equations

n k R2

2 [Eq. (6.82)] 1.225800 0.998154

3 1.014493 0.999908

30 [Eq. (6.88)] 1.009229 0.99995

4 0.876677 0.99999

5 0.787681 0.99993



Using the k-value shown in Table 3, Eq. (6.89) acquires a numerical form

Zð4Þ � 1 � 0:63’þ 0:184’2

ð1 � 0:876677’Þ3
; (6.90)

which, according to Table 3, is the most accurate in the family of Eq. (6.85). It remains to ascertain to

what extent Eq. (6.90) is competitive with the best equations of state presented in the literature for hard

disks.

Santos et al. [162,172] suggested a simple equation of state (written here in our notations)

Z ¼ 1 � 2’þ 2’1 � 1

’2
1

’2

� ��1

; (6.91)

where w1 = 1/f1 = 31/2p/6 is the upper limit for the parking area w at the hexagonal packing. By

comparison with the most known equations of state for hard disks [167,173–178], the authors showed

Eq. (6.91) to be of the highest precision among simple equations. Thus, apart from complex equations of

type of the approximants of Pade [178] and Levin [167], it is enough to compare Eq. (6.90) with

Eq. (6.91) and the standard database. Table 4 gives preference to Eq. (6.90) that becomes the most precise

among simple equations. It is also competitive with respect to complex equations, being only a little less

accurate than the Levin approximant [159].

As the short-range part has been precised, we can return to the general form of Eq. (6.76). For the case

of van der Waals forces (see Eq. (6.43)), Eq. (6.76) becomes

p̃ðnÞ ¼ 1

ð1 � k’Þn�1
’þ f0 � 2kðn� 1Þ

ðn� 1Þðn� 2Þk2
½ð1 � k’Þn�1 � 1 þ ðn� 1Þk’�

� �
�
X
i;k

ãik’i’k:

(6.92)

In the case of a single species, Eq. (6.92) is reduced to

p̃ðnÞ ¼ 1

ð1 � k’Þn�1
’þ 4 � 2kðn� 1Þ

ðn� 1Þðn� 2Þk2
½ð1 � k’Þn�1 � 1 þ ðn� 1Þk’�

� �
� ã’2; (6.93)
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Table 4

The compressibility factor Z for the system of hard disks from the computer simulation data [168] in comparison with the

estimates according to Eq. (6.91) [163] and Eq. (6.90) [160]

w Z [168] Z [163] Z(4)

0.030230 1.06337 1.06333 1.06345

0.045345 1.09743 1.0973 1.09757

0.090690 1.21068 1.2095 1.21083

0.181380 1.4983 1.493 1.49930

0.302301 2.0771 2.058 2.08135

0.453451 3.4243 3.372 3.43960

0.503834 4.1715 4.107 4.19089

0.566814 5.4963 5.427 5.51355

0.604601 6.6074 6.558 6.61278

0.647787 8.306 8.359 8.29391



where the values of n � 3 and k can be taken from Table 3. Since Eq. (6.93) predicts phase transitions and

the critical state, the quality of a particular approximation can be estimated by calculating the critical

constants, especially the critical compressibility factor Zc, as we did in Table 2. Such analysis [159,160]

shows that, although the equation applicability widens to the entire density range, the compressibility

factor only slightly decreases (from 0.3699 in Table 2 to 0.3661 in the fourth approximation) and remains

overestimated. The main source of this inaccuracy is the attractive term. Indeed, Eq. (6.93) includes a

highly developed and strict repulsive part and a very primitive attractive part taken from the van der

Waals equation. This part should be also improved, but not within the theory of excluded area to which we

devoted this section.

6.3. Orientation equation of state

Passing to a monolayer with anisometric particles, the role of the geometrical particle individuality

increases, which is displayed in the presence of the derivative dh/dw in Eq. (6.42) (a similar effect

produces the derivative dh/du in Eq. (6.44)). An explicit relation between the monolayer thickness, two-

dimensional pressure, and surface concentration can be called an orientation equation of state. Finding

this equation can be formulated as a separate problem of thermodynamics and statistical mechanics. For a

long time, there was no idea of the form of such an equation, and only first steps in formulating theory

were undertaken recently [159].

To understand the significance of the orientation equation of state, let us first discuss the role of the

derivative dh/dw in Eq. (6.42). The thermodynamic stability condition requires that dp̃=d’> 0.

Traditionally imagining that particles pass from ‘‘lying’’ to ‘‘standing’’ positions at increasing w, we

also have dh/dw > 0. However, this derivative enters Eq. (6.42) with a negative sign, so that the

presence of the derivative dh/dw in Eq. (6.42) always lowers the derivative dp̃=d’ and the monolayer

stability. One can imagine the case when the derivative dh/dw is such large as to reverse the sign of

dp̃=d’, which means instability and phase transition. Thus, we conclude that, in principle, surface

orientation can be the cause of a two-dimensional phase transition in a monolayer. This idea was

trivially manifested in experiments with surfactant monolayers, but not formulated thermodynami-

cally. Remarkably, this conclusion is valid irrespective of the term p̃l in Eq. (6.42), i.e. even for hard

particles.

The existence of an orientation equation of state is evident even for a rarified gaseous monolayer. The

orientation effect is inevitable since collisions of particles occur only in one plane. The condition dh/

dw = 0 is fulfilled in the limit w ! 0 when there are no collisions. If h0 is a minimal initial monolayer

thickness at the flat orientation of particles, one can assume the thickness increment h � h0 to be

proportional to the collision intensity. The latter is proportional to the square of particle concentration and

to the effective cross-section of collisions, which is determined by the longitudinal (along the surface)

linear dimension of particles. The particle parking area is proportional to the square of this linear

dimension, and the product of the parking area and h is the particle volume that can be assumed constant.

Then the particle linear dimension turns to be inversely proportional to the square root of the thickness,

and we arrive at the orientation equation of state for a gaseous monolayer

h� h0 ¼ k3’
2

h1=2
; (6.94)
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where k3 is a constant. Eq. (6.94) becomes especially simple if h0 is negligible as compared with h (e.g. at

the orientation of long chains):

h3=2 � k3’
2: (6.95)

In this case d ln h=d ln’ ¼ 4=3, and the contribution of the orientation effect to Eq. (6.42) is reduced to

the numerical coefficient.

Proceeding to condensed monolayers (and replacing w with u), one can start from the theory of

elasticity. This idea was already used in the theory of membranes [179] by introducing a tilt modulus. It is

reasonable to assume that a monolayer acquires elastic properties not at once, but after attaining a certain

threshold degree of coverage ut. In accordance with the theory of elasticity, the cause of the monolayer

thickening is the tangential stress pm/h. The corresponding transversal elasticity modulus is

l ¼ dðpm=hÞ
d ln h

: (6.96)

The integration of Eq. (6.96) yields the orientation equation of state in the form

pm ¼ pth

ht
þ lh ln

h

ht

� �
; (6.97)

where the values pt and ht correspond to ut, i.e. to the beginning of orientation within the elasticity

mechanism. The transition to such orientation is typically marked with a kink in the pressure isotherm, so

that the value pt is easily measurable. Besides the minimum monolayer thickness h0 (corresponding to

zero pressure), it is convenient to introduce the maximum thickness h1 corresponding to the densest

packing at infinite pressure. Then we can represent the orientation equation of state (6.97) in a

dimensionless form

p̃0 ¼ p̃0
th̃

h̃t
þ l̃h̃ ln

h̃

h̃t

� �
; (6.98)

where p̃0 is of the same sense as in Eq. (6.44), l̃� la1h1=kBT , and h̃� h=h1 � 1 is the reduced

monolayer thickness.

For a dense state under consideration, we may set aex = a and, correspondingly,

gex ¼ a

a1
¼ h1

h
¼ 1

h̃
: (6.99)

Putting Eq. (6.99) in Eq. (6.44) and using (6.45) for the one-component case, we obtain the equation of

state for a monolayer with van der Waals forces

P̃
0 ¼
Z u

0

1 � d ln h̃=d ln u

1 � u=h̃
du � ã0u2; (6.100)

which, together with Eq. (6.98), completely describes the state of a monolayer with variable particle

orientation. The joint general solution of Eqs. (6.98) and (6.100) is problematic. However, considering

the differential form of the equation of state, we can obtain some qualitative results concerning the kink

points of second-order phase transitions related to the particle orientation. After differentiating,
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Eq. (6.100) becomes

dP̃
0

du
¼ 1 � d ln h̃=d ln u

1 � u=h̃
� 2ã0u � u2 dã0

du
; (6.101)

where, for the sake of generality, the attraction constant ã0 is assumed to be also variable due to

orientation. Since both the derivatives on the right-hand side of Eq. (6.101) are positive, the orientation

leads to decreasing the derivative dp̃0=du. Obviously, there will be a similar behavior of the derivative

dpm=dG ¼ kBT dp̃0=du. So we conclude that, if a kink point is caused by an orientation phase

transition, the positive slop of the pressure isotherm should be smaller on the side of larger coverage

degrees u.

7. Summary and horizons

Although this paper is a review, it contains a lot of material only recently published in the literature and

still not familiar to the wide audience of surface scientists. It is of hope, the review promotes accepting

this material with better understanding. Using an overall tensorial treatment in the mechanical and

chemical parts of the review yields a number of new notions, such as the volume and mass displacement

tensors and the chemical affinity tensor, and even a new class of thermodynamic variables, directed

partial molar quantities. The chemical potential tensor and the affinity tensor should be formally

incorporated in the chemical kinetics of solids. It is although of note that it is more important to

understand that to use the tensorial nature of these quantities in practice. The matter is that only a single

direction is typically used in a particular practical task, and, correspondingly, a single tensorial

component is taken whose tensorial origin can be unnecessarily mentioned (it may be simply called

‘‘chemical potential’’). However, there are special cases when just the tensorial behavior of the chemical

potential determines an effect observed. An example considered is the mechanochemical effect of

dissolution when applying stress in one direction induces a change in solubility in another direction. No

doubt, the discovery of the mechanochemical effect of the strain sign will have further development, both

in the theoretical and experimental aspects.

The fast development of nanothermodynamics is expected. First of all, the equilibrium condition

should be reformulated. As was reported above, Gibbs established the equilibrium condition for a

dissolving solid particle with a special restriction that the solid state is maintained when changing the

particle size. This means that Gibbs considered particles large enough as compared with molecular

dimensions. For nanoparticles, the size dependence of particle properties cannot be ignored, and, as was

mentioned in Section 4.1, the derivative ds/dR should be taken into account. Among other important

problems, there is accounting for the quantum-size effects. These effects have been investigated in many

aspects, but the study of their influence on surface energy, chemisorption, and the size dependence of

surface tension, only starts, to speak not only about nanoparticles, but also about thin films.

The excluded-area theory of an equation of state has been placed in this review because it has a

thermodynamic basement. This is an exceptional case since, generally, the equation of state is not a

consequence of thermodynamics and is something that should complement thermodynamics. The theory

results in finding the repulsive term of an equation of state with great precision, but says nothing about the

attractive term, which is to be found by quantum and statistical mechanical (not thermodynamic)

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239234



methods. Using these methods and modeling will secure further progress in the calculation of the

attractive part of an equation of state, and the exact knowledge of the repulsive part will promote this

progress. It is also important for finding the equation-of-state constant by fitting to experimental results.

Having two or more fitting parameters, a god fit for the attractive constant was often attained earlier at the

expense of the repulsive constant. With the above theory, this will be excluded in the future when the

repulsive constant can be determined irrespective of the attractive one.

However, finding the repulsive constant from the excluded area requires the knowledge of the

geometrical shape of a particle. This is of no importance in two cases: if a particle is soft and if a

monolayer is of low density. In the first case, a particle (consisting, for example, of flexible fragments) is

capable of changing its configuration at various packing. In the second case, a particle (if not at zero

temperature) is in a state of thermal Brownian rotation and seems to be round irrespective of its real

shape. Thus, above considering the excluded area as the area of a circle is of general significance. The

knowledge of the real particle shape and dimensions becomes important for rigid particle in a high-

density monolayer. When the theory of excluded area for such particles will be formulated, it will make

the basement for the equation of state of anisotropic two-dimensional phases. The classification of such

phases will correspond to the classification of the particle types. Further progress is expected in

formulating the theory of an orientation equation of state.

Acknowledgements

This work was supported by RFBR (grant 04-03-32134) and the program ‘‘Leading scientific schools

of Russian Federation’’ (grant NS-789.2003.3).

References

[1] A.I. Rusanov, Surf. Sci. Rep. 23 (1996) 173.

[2] J.W. Gibbs, Proc. Am. Acad. 16 (1881) 420.

[3] L.D. Landau, E.M. Lifschitz, Theory of Elasticity, Pergamon, Oxford, 1970, 1975, 1981.

[4] A.I. Rusanov, Russ. J. Gen. Chem. 70 (2000) 329.

[5] A.I. Rusanov, Russ. J. Gen. Chem. 72 (2002) 327.

[6] C. Truesdell, A First Course in Rational Continuum Mechanics, Johns Hopkins University, Baltimore, 1972.

[7] J.W. Gibbs, The Scientific Papers, Longmans, New York, 1906, 1928.

[8] R.W. Goranson, Thermodynamic Relations in Multicomponent Systems, vol. 408, Carnegie Inst. Wash. Publ.,

Washington, 1930.

[9] R.W. Goranson, Bull. Geol. Soc. Am. 51 (1940) 1023.

[10] R.W. Goranson, J. Chem. Phys. 8 (1940) 323.

[11] J. Verhoogen, Trans. Am. Geophys. Union. 32 (1951) 251.

[12] W.B. Kamb, J. Geol. 67 (1959) 153.

[13] G.J.F. MacDonald, Am. J. Sci. 255 (1957) 266.

[14] G.J.F. MacDonald, Geol. Soc. Am. Mem. 79 (1960) 1.

[15] W.B. Kamb, J. Geophys. Res. 66 (1961) 259.

[16] Ya.S. Pidstrigach, Dop. AN URSR 3 (1963) 336.

[17] Ya.S. Pidstrigach, Dop. AN URSR 8 (1963) 1015.

[18] Ya.S. Podstrigach, Probl. Mech. Real Solids 2 (1964) 71.

[19] Ya.S. Podstrigach, Appl. Mech. Tech. Phys. 2 (1965) 67.

A.I. Rusanov / Surface Science Reports 58 (2005) 111–239 235



[20] Ya.S. Podstrigach, Yu.Z. Povstenko, An Introduction into the Mechanics of Surface Phenomena in Deformable Solids,

Naukova Dumka, Kiev, 1985 (in Russian).

[21] B. Stuke, Phys. Lett. 21 (1966) 649.

[22] B. Stuke, Z. Naturforsch. 30a (1975) 1433.

[23] R.M. Bowen, Arch. Rat. Mech. Anal. (1967) 370.

[24] R.M. Bowen, J.C. Wiese, Int. J. Eng. Sci. 7 (1969) 689.

[25] Y. Ida, J. Geophys. Res. 74 (1969) 3208.

[26] C. Truesdell, Rational Thermodynamics, McGraw-Hill, New York, 1969.

[27] O.V. Temnov, Invest. Theory Elast. Plast. 10 (1974) 83 (in Russian).

[28] M.A. Grinfel’d, Dokl. AN SSSR 251 (1980) 824.

[29] M.A. Grinfel’d, Methods of Continuum Mechanics in Theory of Phase Transformations, Nauka, Moscow, 1990 (in

Russian).

[30] A.I. Rusanov, in: Yu.V. Naidich (Ed.), Adhesion of Melts and Solder of Materials, Iss. 17, Naukova Dumka, Kiev, 1986,

p. 3 (in Russian).

[31] A.I. Rusanov, Pure Appl. Chem. 61 (1989) 1945.

[32] W.B. Durham, H. Schmalzried, Ber. Bunsenges. Phys. Chem. 91 (1987) 556.

[33] I. Prigogine, R. Defay, Chemical Thermodynamics, Longmans, London, 1954.

[34] M. Kumazawa, J. Earth. Sci., Nagoya Univ. 11 (1963) 145.

[35] I.J. Lin, S. Nadiv, Mater. Sci. Eng. 39 (1979) 193.

[36] R.S. Coe, M.S. Paterson, J. Geophys. Res. 74 (1969) 4921.

[37] H. Ibach, Surf. Sci. Rep. 29 (1997) 193.

[38] G.T. Ostapenko, A.N. Kovalevski, N.I. Khitarov, Dokl. AN SSSR 203 (1972) 376.

[39] G.V. Berenshtein, A.M. Dyachenko, A.I. Rusanov, Dokl. AN SSSR 298 (1988) 1402.

[40] E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific, Singapore, 1994.

[41] A.I. Rusanov, N.B. Uriev, P.V. Eryukin, T.G. Movchan, N.E. Esipova, Mendeleev Commun. 2 (2004) 58.

[42] G.C. Benson, K.S. Yun, in: E.A. Flood (Ed.), The Solid–Gas Interface, vol. 1, Arnold, London, 1967, p. 203.

[43] A.W. Adamson, Physical Chemistry of Surfaces, Wiley, New York, 1976.

[44] E.A. Guggenheim, Trans. Faraday Soc. 36 (1940) 397.

[45] P. Mueller, A. Saul, Surf. Sci. Rep. 54 (2004) 157.

[46] A.I. Rusanov, A.K. Shchekin, Colloid J. 61 (1999) 403.

[47] A.I. Rusanov, A.K. Shchekin, Mendeleev Commun. 4 (2000) 128.

[48] A.I. Rusanov, A.K. Shchekin, Colloids Surf. 192 (2001) 357.

[49] A.I. Rusanov, A.K. Shchekin, V.B. Varshavskii, Colloid J. 63 (2001) 365.

[50] A.I. Rusanov, Phasengleichgewichte und Grenzflächenerscheinungen, Akademie-Verlag, Berlin, 1978.
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