На правах рукописи

Шалаева Елизавета Викторовна

СТРУКТУРА И ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В КВАЗИКРИСТАЛЛООБРАЗУЮЩИХ И β-СПЛАВАХ СИСТЕМЫ Al-Cu-Fe

Специальность 02.00.21 – химия твердого тела

Автореферат диссертации на соискание ученой степени доктора химических наук

Екатеринбург- 2009 г.

Работа выполнена в лаборатории квантовой химии и спектроскопии Учреждения Российской Академии наук Института химии твердого тела Уральского отделения РАН

Официальные оппоненты:

член-корреспондент РАН, доктор химических наук, профессор, Бамбуров Виталий Григорьевич

доктор физико-математических наук, профессор, Пушин Владимир Григорьевич

доктор технических наук, профессор, Крапошин Валентин Сидорович

Ведущая организация:

Уральский государственный университет им. А.М. Горького

Защита состоится 27 мар

27 марта 2009 г. в 14.00 часов

на заседании Диссертационного Совета 004.004.01 в Учреждении Российской Академии наук Институте химии твердого тела Уральского отделения РАН по адресу: 620041, Екатеринбург, ул. Первомайская, 91

С диссертацией можно ознакомиться в библиотеке УрО РАН

Автореферат разослан "....." 2009 г.

Ученый секретарь Диссертационного совета

Штин А.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Диссертационная работа посвящена фундаментальной проблеме материаловедения – установлению структуры и механизмов структурно-фазовых превращений в квазикристаллических и квазикристаллообразующих системах на основе сплавов. Актуальность решения подобной проблемы определяется не только самостоятельной важностью этого вопроса, но и необходимостью направленного формирования структуры в квазикристаллообразующих сплавах, обладающих целым рядом уникальных и потенциально привлекательных для практики свойств.

Квазикристаллические структуры – это отдельный класс апериодических структур, которые в отличие от традиционных кристаллических структур характеризуются отсутствием трансляционной симметрии [1]. Для них свойственно наличие ориентационного порядка (пятой, восьмой, десятой симметрии), несовместимого с трансляцией, который связан с определенной локальной атомной структурой кластеров пятой, восьмой, десятой симметрии и апериодическим законом упаковки кластеров в пространстве. Для описания этих структур требуется привлечение N-мерного пространства с размерностью, превышающей размерность реального трехмерного пространства.

Квазикристаллические структуры в сплавах были открыты 25 лет тому назад. Однако, для этих объектов до сих пор существует целый ряд нерешенных проблем. Одна из них - механизмы фазовых превращений квазикристал \rightarrow кристалл, кристалл \rightarrow квазикристалл [2]. Отсутствует также общая теория этих превращений. Для отдельных групп квазикристаллообразующих объектов не установлена конкретная реализация превращения, ее стадии. Среди кристаллических фаз, испытывающих взаимные превращения с квазикристаллами, выделяют две группы. Первая группа – это кристаллические фазы, обладающие локальной атомной структурой, близкой к локальной атомной структуре квазикристаллов; сюда относятся рациональные и структурные аппроксимантные кристалл - это наиболее изученная группа объектов. Вторая группа квазикристаллические фазы, испытывающих взаимные превращения с квазикристаллами, – это кристаллические фазы, не характеризующиеся локальной атомной структурой, близкой к квазикристаллические фазы, К этой группе структур принадлежат β (CsCl)-твердые растворы в квазикристаллообразующих системах.

Квазикристаллобразующие системы, в которых осуществляются взаимные превращения квазикристалл $\rightarrow \beta$ -твердый раствор, β -твердый раствор \rightarrow квазикристалл, это сплавы на основе Al и переходных металлов. Эти превращения были реализованы в бомбардировки метастабильных условиях: В результате ионной исходной квазикристаллической фазы (квазикристалл→β) и последующего изотермического отжига (β→квазикристалл) [3,4], а также при отжиге метастабильных закаленных двухфазных сплавов (β+1), так называемых, квазикристаллообразующих сплавов (β-квазикристалл) [5]. Наиболее экспериментально изученными являются трансформации на монозеренных декагональных (D-) квазикристаллах (2-мерная квазипериодичность) и для сплавов с декагональной структурой. Для них установлены взаимно-ориентационные соотношения Ви D-фаз; с привлечением многомерной кристаллографии механизм трансформации D $\rightarrow \beta$ через усредненную решетку путем переупорядочения атомов. Качественно такая модель допускается и для трансформации 3-мерный икосаэдрический (ι-) квазикристалл → βтвердый раствор на гранях монозеренных квазикристаллов. Вместе с тем, систематических экспериментальных данных о конкретной реализации превращений $\iota \rightarrow \beta$ и $\beta \rightarrow \iota$, как и структурной модели формирования икосаэдрической фазы с позиций перестройки локальной атомной структуры для объемных квазикристаллообразующих систем нет.

Очевидно, что с этой задачей, относящейся к конкретной реализации превращений

 $\iota \rightarrow \beta$ и $\beta \rightarrow \iota$, связан целый ряд задач, которые имеют самостоятельное значение для квазикристаллообразующих систем. Это задачи: о структурном состоянии превращающегося β -твердого раствора (типе и характеристиках ближнего порядка, их зависимости от концентрации сплава), о возможных промежуточных превращениях β -твердого раствора как в квазикристаллообразующих (β + ι), так и β - сплавах, о совершенстве и дефектности формирующейся квазикристаллической икосаэдрической фазы.

Наибольший интерес с точки зрения всех этих нерешенных вопросов представляет квазикристаллообразующая система Al-Cu-Fe, для которой икосаэдрическая квазикристаллическая фаза является стабильной [6], и трансформация $\beta \rightarrow \iota$ реализуется при изотермических отжигах закаленных квазикристаллообразующих сплавов ($\beta+\iota$) с составом, близким к области существования ι -фазы [5]. Актуальность изучения структуры и фазовых превращений в квазикристаллообразующих и β -сплавах системы Al-Cu-Fe определяется также необходимостью выяснения природы недавно обнаруженных каталитических свойств этих сплавов и установления взаимосвязи тонкой структуры этих сплавов и оптимальных каталитических свойств [7].

Целью диссертационной работы является выяснение структуры и механизмов фазовых превращений в квазикристаллообразующих и β-сплавах на основе Al-Cu-Fe с использованием комплекса экспериментальных структурных и физических методов, а также теоретических первопринципных расчетов (с целью дальнейшего использования полученных результатов для выяснения природы и оптимизации каталитических свойств). В соответствии с общей целью в работе решались следующие конкретные задачи:

- получение ряда модельных закаленных квазикристаллообразующих сплавов Al-Cu-Fe (β+ι) методом закалки в чешуйки с взаимно-ориентированной кристаллизацией β- и ι-фаз;

- экспериментальное и теоретическое исследование взаимно-ориентационных соотношений β- и ι- фаз в квазикристаллообразующих сплавах;

- определение структурного состояния β-твердого раствора в квазикристаллообразующих (ι+β) и в β-сплавах экспериментальными и теоретическими методами – типа ближнего порядка, его зависимости от концентрации сплава (соотношения Cu/Fe), связи с выделением возможных упорядоченных фаз;

- исследование первопринципными зонными методами стабильности, энергетических и магнитных характеристик β-твердых растворов AlCu_xFe_{1-x}, упорядоченных на основе β-твердого раствора фаз, а также влияния на эти характеристики структурных дефектов с целью прогнозирования модели устойчивого ближнего порядка β-твердого раствора;

- анализ возможных моделей трансформации β→ι и дефектности формирующейся икосаэдрической фазы по результатам электронно-микроскопического исследования закаленных квазикристаллобразующих сплавов Al-Cu-Fe (β+ι), подвергнутых изотермическим отжигам;

- изучение возможностей метода рентгеновской фотоэлектронной спектроскопии (РФЭС) для оценки степени совершенства икосаэдрической полизеренной фазы по РФЭспектрам вблизи уровня Ферми и остовных уровней;

- оценка возможностей РФД (рентгеновской фотоэлектронной дифракции) структурного метода для анализа упорядоченных фаз и структурных дефектов в поверхностных слоях квазикристаллов Al-Cu-Fe и других объектов

Для выполнения поставленных задач в качестве основного метода выбран метод просвечивающей электронной микроскопии и электронной дифракции. Этот метод является наиболее информативным для изучения гетерофазных систем, их микроструктуры, взаимной ориентации фаз, структурного состояния фаз, их дефектности, в том числе эффектов ближнего порядка. В данной работе на модельных оксидных твердых растворах с привлечением аналитических методов продемонстрированы возможности определения структурного состояния твердых растворов, типа и характеристик ближнего порядка по анализу эффектов диффузного рассеяния электронов. Этот метод оказался плодотворным и при исследовании квазикристаллообразующих систем.

На защиту выносятся следующие основные положения:

- определение модели ближнего порядка смешанного типа (с ω -подобными смещениями) для β -твердых растворов $Al_{50-x}(Cu,Fe)_{50+x}$ (-5<x<3, Fe<5-8 ат.%) в квазикристаллообразующих ($\iota+\beta$) и β -сплавах Al-Cu-Fe, его связи с рядом упорядоченных на основе β -твердого раствора фаз (τ_3 -Al₃(Cu,Fe)₂, η_1 -Al(Cu,Fe), ϕ -Al₁₀Cu₁₀Fe), которые имеют общую структурную особенность - ω -подобное смещение плоскостей типа (111)₆;

- результаты первопринципных расчетов стабильности β -твердых растворов Al-Cu-Fe и упорядоченных на основе β -твердого раствора фаз, а также эффект стабилизации упорядоченных фаз τ_3 -Al₃Cu₂ и η_2 -AlCu при частичном замещении атомами железа структурных позиций меди и прогноз устойчивости ближнего порядка на основе указанных фаз в тройных β -твердых растворах;

- установление расчетным (с помощью стереографических проекций) и электроннодифракционным методами новых ориентационных соотношений для решеток β- и ι-фаз, дополнительных к уже известным;

- установление двух механизмов структурно-фазового превращения $\beta \rightarrow \iota$ при изотермических отжигах закаленных квазикристаллообразующих сплавов Al-Cu-Fe ($\beta+\iota$): непосредственное превращение из β -твердого раствора с областями ближнего порядка смешанного типа в икосаэдрическую фазу и превращение $\beta \rightarrow \iota$ через промежуточную 3С-фазу (в последнем случае ι -фаза образуется с большим количеством ростовых двумерных дефектов); определение степени совершенства полизеренной ι -фазы РФЭС- методом по остовным электронным уровням;

- обнаружение новой упорядоченной 3С-фазы с кубической решеткой и утроенным параметром 3а_β, которая образуется в результате гомогенного выделения из β-твердого раствора с ближним порядком смешанного типа в области электронных концентраций е/а ~1.75-1.95, близких к электронной концентрации ι-фазы;

- развитие РФД структурного метода в рамках s-приближения применительно к ряду различных объектов (граней монокристаллов Nb,Ti, адсорбированных слоев N/Ti(0001), O/Ti(0001), C(O)/Ti(0001), N(O)/Ti(0001), ионно-модифицированной грани CuInSe₂ (112)), в том числе и для упорядоченных на основе β-твердого раствора фаз в квазикристаллообразующей системе Al-Cu-Fe.

Научная новизна:

- в работе впервые предложен подход к выяснению механизма превращения $\beta \rightarrow \iota$ с учетом реального структурного состояния β -твердого раствора; для этого в качестве модельных выбраны закаленные квазикристаллообразующие сплавы Al-Cu-Fe ($\iota+\beta$), которые при изотермических отжигах трансформируются в однофазную икосаэдрическую структуру; при этом использован комплекс электронно-микроскопических, спектроскопических методов, измерений физических свойств и первопринципные расчеты;

- впервые установлен факт формирования ближнего порядка в β -твердом растворе в квазикристаллообразующих сплавах и в богатых медью β -сплавах Al-Cu-Fe, предложена его модель (замещение с ω -подобными смещениями), выяснена связь ближнего порядка с рядом упорядоченных на основе β -твердого раствора фаз - τ_3 -Al₃(Cu,Fe)₂, η_1 -Al(Cu,Fe), ϕ -Al₁₀Cu₁₀Fe и впервые обнаруженной 3C-фазой;

- найден ряд новых взаимно-ориентационных соотношений β - и ι- фаз; впервые определены механизмы превращения $\beta \rightarrow \iota$ в квазикристаллообразующих сплавах Al-Cu-Fe, выявлена роль ближнего порядка с ω -подобными смещениями в этом превращении,

установлены промежуточные стадии этого процесса и образование ростовых двумерных дефектов в формирующейся 1-фазе; впервые продемонстрировано определение совершенства полизеренной 1-фазы РФЭС-методом по остовным уровням;

- впервые расчетным РФД-методом в рамках единого подхода определены структурные характеристики поверхности для разнообразных объектов (граней монокристаллов Nb,Ti, адсорбированных слоев N/Ti(0001), O/Ti(0001), C(O)/Ti(0001), N(O)/Ti(0001), ионно-модифицированной грани CuInSe₂ (112), упорядоченных на основе β-твердого раствора фаз Al-Cu-Fe).

Практическое значение работы. Основное практическое значение работы состоит в том, что полученные в ней результаты о механизме и стадиях трансформации $\beta \rightarrow \iota$, о совершенстве формирующейся икосаэдрической фазы в квазикристаллообразующих сплавах Al-Cu-Fe позволяют направленно формировать структуру этих сплавов. С точки зрения недавно обнаруженных практических применений полизеренных квазикристаллических сплавов Al-Cu-Fe, а именно, возможности использования этих сплавов в качестве катализаторов в технологии разложения метанола и селективного окисления пропана до пропена, это имеет несомненную ценность.

К настоящему моменту нет полного понимания природы каталитических свойств квазикристаллических сплавов Al-Cu-Fe, не установлена микроскопическая модель каталитически активной приповерхностной зоны этих сплавов с оптимальными каталитическими свойствами. В связи с ЭТИМ, сплавы Al-Cu-Fe, полученные спиннингованием (или другими вариантами быстрой закалки) и подвергнутые различным изотермическим отжигам с целью формирования различных структурных состояний икосаэдрической квазикристаллической фазы, ее кристаллических аппроксимантов и упорядоченных на основе β-твердого раствора фаз, могут быть выбраны в качестве модельных для выяснения взаимосвязи тонкой структуры и каталитических свойств и разработки катализаторов с оптимальными свойствами основе на квазикристаллообразующих сплавов Al-Cu-Fe. Существенным является тот факт, что метод получения квазикристаллообразующих сплавов Al-Cu-Fe (закалка в чешуйки) в данной работе является одним из вариантов спинингования - метода, используемого в технологии получения этих сплавов для каталитических реакций.

Апробация работы. Основные положения диссертации докладывались на XVII Международном кристаллографическом конгрессе (Лиссабон, 1997), Международной конференции NATO "Материаловедение карбидов, нитридов и боридов", (С-Петербург, 1998), Седьмой Международной конференции по квазикристаллам ICQ'1999 (Штутгарт, 1999), Всероссийской конференции "Химия твердого тела и функциональные материалы" (Екатеринбург, 2000), Международной конференции Quasicrystals'2001 (Япония, 2001), Международном симпозиуме "Фазовые превращения в твердых растворах и сплавах, ОМА-2003" (Сочи, 2003), E-MRS совещании (Франция, 2003), Международной конференции "Фазовые превращения и прочность кристаллов" (Черноголовка, 2004), IV Всероссийском семинаре "Химия твердого тела и функциональные материалы" (Екатеринбург, 2004), V Всероссийском совещании "Термодинамика и материаловедение" (Новосибирск, 2005), VI Всероссийском семинаре "Термодинамика и материаловедение" (Екатеринбург, 2006), Международной конференции Aperiodic'06 (Япония, 2006), Международном симпозиуме "Упорядочение в минералах и сплавах, ОМА-2007" (Сочи, 2007), Всероссийской конференции "Химия твердого тела и функциональные материалы - 2008" (Екатеринбург, 2008).

Личный вклад автора. Автор сформулировал цель исследования, конкретные задачи диссертации и разработал методические подходы для их решения. Электронномикроскопические и электронно-дифракционные эксперименты на всех объектах, их анализ, а также соответствующие теоретические расчеты выполнены лично диссертантом; электронно-микроскопическое исследование выполнены диссертантом в ЦКП ИФМ УрО РАН "Электронная микроскопия". Квантово-химические первопринципные расчеты проведены совместно с Медведевой Н.И. (ИХТТ УрО РАН) по структурным моделям, предложенным диссертантом. Работа по развитию РФД-метода выполнена в рамках комплексного исследования поверхностных явлений по тематике ИХТТ УрО РАН. Диссертантом построены структурные модели, выполнены расчеты РФД-картин и получены конкретные данные о структуре целого ряда разных объектов. Экспериментальные РФЭ-спектры и РФД картины получены Кузнецовым М.В. (ИХТТ УрО РАН).

Структура и объем диссертации. Диссертационная работа состоит из введения, семи глав, общих выводов и списка цитируемой литературы. Диссертация изложена на 341 странице, включает 11 таблиц и 148 рисунков. Список литературы содержит 365 цитируемых источников.

Работа выполнена в лаборатории квантовой химии и спектроскопии Института химии твердого тела УрО РАН по координационным планам Российской Академии наук в рамках тем на 1996-2001 гг, 2001-2004 гг "Синтез и исследование структурного состояния и электрофизических свойств твердых растворов на основе переходных металлов в пленочном и объемном состоянии" и "Фотоэлектронная спектроскопия и фотоэлектронная дифракция поверхности переходных металлов и соединений на их основе: состав, структура и химическая связь" (Гос.регистрация 01.9.00007943, 01.200.1 16034), и на 2007-2010 гг. в рамках темы "Спектральные и микроскопические методы исследования новых неорганических соединений и композиционных материалов: состав, структура, (Гос.рег. 01.2.007.05205), а также а рамках научнохимическая связь и свойства" исследовательских проектов, поддержанных Российским фондом фундаментальных исследований (гранты 05-03-32186, 05-03-32178, 01-03-32501, 98-03-33194, 97-02-27055, 96-03-32037), и INTAS (2001-283).

СОДЕРЖАНИЕ РАБОТЫ

В первой главе сделан литературный обзор современных представлений о структуре и характеристиках квазикристаллических декагональных и икосаэдрических фаз в металлических сплавах. Приведена информация о структурных дефектах, порядке и беспорядке в реальных икосаэдрических фазах, об аномальных полупроводниковосвойствах квазикристаллических икосаэдрических подобных физических фаз И существующих взглядах на механизм их формирования. Проанализированы имеющиеся результаты кисследования по превращениям кристалл квазикристалл \leftrightarrow для квазикристаллообразующих систем, а также по превращениям β-твердый раствор ↔ квазикристалл в системах на основе алюминия и переходных металлов. Рассмотрены работы о структурном состоянии ОЦК- и β-твердого раствора в предпереходном состоянии перед фазовыми переходами типа смещения (мартенситного типа), типа ОЦК(β) $\rightarrow \omega$ и типа упорядочения в квазикристаллообразующих сплавах, включая сплавы на основе алюминия. Обоснована постановка основной цели исследования - выяснение структуры и механизмов фазовых превращений в квазикристаллообразующих (β+ι) и β-сплавах и выбор квазикристаллообразующей системы – Al-Cu-Fe как основной модельной системы. В заключение сформулированы конкретные задачи исследования.

Во второй главе описаны конкретные объекты исследования, методы их приготовления, экспериментальные структурные и физические методики, а также расчетные теоретические программы, использованные в настоящей диссертационной работе.

<u>Образцы и методы приготовления.</u> Сплавы квазикристаллообразующей системы Al-Cu-Fe были получены одним из способов быстрой закалки, которые используются для получения катализаторов на основе Al-Cu-Fe, а именно, разбрызгиванием расплавленной капли в чешуйки (толщиной 10-100 мкм). Образцы аморфообразующей системы Ti-Si-N(O) синтезированы в пленочном виде методом аrc-осаждения. Модельные B1-твердые растворы оксидов Nb(N,O)_{1.2}, LiNi_{0.4}Fe_{0.6}O₂, на которых продемонстрированы возможности определения типа и характеристик ближнего порядка методом анализа диффузного рассеяния электронов, синтезированы катодным реактивным распылением и твердофазным методом. Модельные объекты для РФД анализа (монокристаллические поверхности (0001)Ti, (110) Nb, (112) CuInSe₂) выращены методом зонной плавки и вертикальной Bridgmen – технологии. Адсорбированные слои N/(0001)Ti, O/(0001)Ti, CO/(0001)Ti получены *in situ* в рентгено-фотоэлектронном спектрометре.

<u>Методики исследований</u>. Основным структурным методом исследования является просвечивающая электронная микроскопия, которая наиболее информативна для изучения гетерофазных систем - их микроструктуры, взаимной ориентации фаз, структурного состояния и дефектности фаз, в том числе эффектов ближнего порядка. Исследования выполнены на микроскопе JEM-200 С. Использованы также сканирующая электронная микроскопия и зондовый микроанализ (микроскоп -JSM9600LV) и рентгеновская дифрактометрия (STADI–P).

Эксперименты по рентгеновской фотоэлектронной спектроскопии и рентгеновской фотоэлектронной дифракции выполнены на электронном спектрометре ESCALAB MK II. Для расчета РФД зависимостей по модельным кластерным структурам в рамках однократного рассеяния фотоэлектронов (SSC-SW) использована программа, предоставленная проф. Fadley C.S., в рамках многократного рассеяния (MSC-SW) - пакет программ (Chen J., van Hove M.A., 1997) – http:// electron.lbl.gov./mscdpack/mascdpack.htlm.

исследования свойств И фазовых превращений Для в сплавах квазикристаллообразующей системы Al-Cu-Fe были использованы следующие физические методики: измерение низкотемпературной теплоемкости релаксационным методом (PPMS), измерение низкотемпературной магнитной восприимчивости с помощью сквидстандартным магнетометра (MPMS-5XL), низкотемпературного сопротивления четырехзондовым измерение высокотемпературной магнитной методом И восприимчивости методом Фарадея на маятниковых магнитных весах Доменикале.

Для исследования стабильности, дефектности и магнитных свойств β-твердых растворов Al-Cu-Fe и упорядоченных на их основе фаз применены первопринципные квантово-химические расчеты (пакет VASP, Vienna Ab-initio Simulation Package).

В третьей главе рассмотрены методические подходы к определению структурного состояния твердых растворов (наличия ближнего порядка, его типа и характеристик) по эффектам диффузного рассеяния в дифракционных методах. Основное внимание уделено диффузным эффектам рассеяния электронов высокой энергии; подробно изложены основы кластерного метода, разработанного Риддером и Амелинксом [8], и подхода волн атомных смещений [9]. Приведены литературные (для ОЦК-сплавов переходных металлов) и оригинальные (для В1-оксидов LiFe_{0.6}Ni_{0.4}O₂, Nb(N,O)_{1.2}) примеры твердорастворных систем в предпереходном состоянии, для которых проанализировано диффузное рассеяния электронов, определен тип ближнего порядка (ближний порядок замещения, ближний порядок смещения, и смешанный тип ближнего порядка) и его характеристики.

<u>Ближний порядок замещения.</u> <u>Электронно-дифракционное исследование</u> <u>структуры кубических B1-твердых растворов Li(Fe_{0.6}Ni_{0.4})O₂.</u> Известно, что формирование оксидных фаз $A^{3+}B^{1+}O_2^{2-}$ (A,B – Me₁, Me₂), упорядоченных по

металлической подрешетке на основе B1(NaCl)-структуры, характеризуется наличием переходного (предпереходного) состояния с эффектами ближнего порядка замещения в неупорядоченной B1-фазе. В нашем исследовании для твердых растворов этих фаз, в частности, на примере B1-твердого раствора LiFe_{0.6}Ni_{0.4}O₂ также продемонстрировано формирование ближнего порядка типа замещения. С использованием

Рис.1. Электронно-дифракционный анализ диффузного рассеяния (д.р.) для кристаллов кубического твердого раствора (B1) LiFe_{0.6}Ni_{0.4}O₂. а-в – экспериментальные дифракционные картины; г-ж – расчетные картины распределения д.р. для октаэдрического кластера ближнего порядка в рамках кластерной модели Риддера-Амелинкса, сечения $(001)_{B1}^*$ (г), $(110)_{B1}^*$ (д), $(111)_{B1}^*$ (е) и распределение д.р. в обратном пространстве (ж); з – наложение сечения $(110)_{B1}^*$ и двух эквивалентных сечений обратной решетки ромбоэдрической фазы типа LiNiO₂ ($R\overline{3}m$) с ориентациями: $(100)_{rek}^* | (110)_{B1}^*$, $[001]_{rek}^* | [11\overline{1}\overline{1}]_{B1}^*$; $(100)_{rek}^* | (110)_{B1}^*$, $[001]_{rek}^* | [11\overline{1}\overline{1}]_{B1}^*$

метода электронной дифракции установлено, что B1(NaCl)-твердый раствор LiFe_{0.6}Ni_{0.4}O₂ характеризуется закономерным распределением диффузного рассеяния, не проходящего через брэгговские рефлексы (рис.1.а-в). С помощью кластерного метода показано, что диффузное рассеяние в B1-LiFe_{0.6}Ni_{0.4}O₂ обусловлено только ближним порядком замещения. Аналитическое описание в рамках кластерного метода позволило определить октаэдрический тип кластеров ближнего порядка и связать ближний порядок замещения с образующейся в этой системе ромбоэдрической сверхструктурой типа LiNiO₂ ($R\overline{3}m$) (рис.1.г-з). Такой ближний порядок включает образование преобладающих октаэдрических кластеров состава ~ Li₃(Fe,Ni)₃ с перераспределением атомов никеля и лития в чередующихся плоскостях типа (111)_{В1}. Сопоставление с известными данными о составе ромбоэдрических твердых растворов LiFe_{0.2}Ni_{0.8}O₂ - LiNiO₂ дает основание говорить о формировании ближнего порядка типа замещения в областях с повышенным содержанием никеля по сравнению со средним макроскопическим составом образцов (LiFe_{0.6}Ni_{0.4}O₂). Обнаруженные характеристики ближнего структурного порядка типа замещения согласуются с моделью суперпарамагнитных свойств оксида B1-LiFe_{0.6}Ni_{0.4}O₂.

<u>Ближний порядок замещения с атомными смещениями. Электронно-дифракционное</u> <u>исследование структуры кубического сверхстехиометрического В1-оксинитрида</u> <u> $Nb(N,O)_{1,2}$ </u> Сверхстехиометрические B1-фазы с вакансиями в металлической подрешетке и среди них оксидные фазы (FeO_{1+x}, VO_{1+x}, TiO_{1+x}) – это типичные системы со значительными атомными смещениями при упорядочении. Впервые обнаруженной нами фазой с аналогичными структурными характеристиками является сверхстехиометрический оксинитрид B1-Nb(N,O)_{1.2}.

В исходном состоянии для B1-Nb(N,O)_{1.2} обнаружено диффузное рассеяние с определенными законами погасания. Оно имеет вид плоских областей в ассиметричных

Рис.2. Электронно-дифракционные картины (и их схемы), полученные от эпитаксиальных пленок В1-Nb(N,O)_{1.2}, осажденных при температуре 300°С: а,б - ось зоны [001]; в,г – [112], д,е – [114]

Рис.3. Дифракционные картины (и соответствующие схемы), полученные для пленок B1-Nb(N,O)_{1.2}, отожженных при температуре 600°С: а – ось зоны [001], б – [112], в – ось зоны [110]. Эффекты двойной дифракции на схемах не указаны, • - рефлексы новой Х-фазы, • - рефлексы матричной B1-фазы (δ)

позициях ~1.1 $\vec{G}_{100_{B1}}$, ~1.1 $\vec{G}_{010_{B1}}$ в районе структурных и сверхструктурных узлов и сферических поверхностей в районе структурных узлов (рис.2). При низкотемпературном отжиге (600°C) Nb(N,O)_{1.2} происходит выделение X-фазы, которая описывается примитивной несоразмерной кубической решеткой и проявляет следующие соотношения с исходной B1-фазой и позициями плоских диффузных эффектов: - $\vec{G}_{100_x} \approx 1.1 \vec{G}_{001_x} \approx 1.1 \vec{G}_{001_x} \approx 1.1 \vec{G}_{001_x} (puc.3)$. В рамках подхода волн атомных смещений для сверхстехиометрического B1-Nb(N,O)_{1.2} предложена следующая модель ближнего порядка. Основная компонента - это ближний порядок типа замещения с несоразмерными волнами ~1.1 · \vec{g}_{100} и $1.1 \cdot \vec{g}_{010}$, который сопровождается возникновением атомных поперечнополяризованных смещений в направлениях типа <100>_{B1} и <010>_{B1}. Этот ближний порядок проявляется в виде плоских диффузных эффектов и приводит после отжига к образованию несоразмерной кубической структуры. Прогнозируется, что такой же характер ближнего порядка и выделение фазы X-типа может реализовываться в сверхстехиометрических В1-оксидах металлов V – группы, в том числе для VO_{1+x}.

В четвертой главе представлены результаты фазового анализа, а также исследования микроструктуры закаленных квазикристаллообразующих сплавов Al-Cu-Fe, их физические свойства как в отожженном, так и в исходном закаленном состоянии. Выполнено детальное экспериментальное электронно-дифракционное и расчетное (с использованием метода стереографических проекций) исследование взаимноориентационных соотношений β-твердого раствора и ι-фазы в квазикристаллообразующих сплавах. Ориентационные соотношения В/1 проанализированы в рамках критерия Маккаи (максимальной точечной симметрии) и с точки зрения упругих и неупругих механизмов их стабилизации.

Установлено, что квазикристаллообразующие сплавы Al₆₁Fe₂₆Cu₁₃, Al₆₃Cu₂₅Fe₁₂ могут быть получены методом разбрызгивания расплавленной капли (в чешуйки) в двухфазном состоянии (β+1) с дендритной структурой (рис.4). Выбранные сплавы Al₆₁Cu₂₅Fe₁₃, Al₆₃Cu₂₅Fe₁₂ отвечают крайним составам по содержанию алюминия в области

Рис.4. Светлопольные электронно-микроскопические изображения структуры двухфазных закаленных сплавов Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂ (a,б). Микродифракционные картины, полученные с дендритов 1-фазы: в - в направлении оси симметрии A51, г - A31, д – A21, е – A2P (в плоскости зеркального отражения)

стабильности і-фазы. Состав β -твердого раствора по данным сканирующей электронной микроскопии оценивается в интервале $Al_{50-x}(Cu,Fe)_{50+x}$ (-5< x < 3, Fe 5-8 ат.%), что соответствует электронной концентрации $e/a \approx 1.71-1.95$, близкой к e/a=1.86 і-фазы [10]. Зависимости низкотемпературной проводимости и магнитной восприимчивости квазикристаллообразующих сплавов Al-Cu-Fe (β +1) в закаленном состоянии имеют

Рис.5. Схема расположения осей симметрии і-фазы и направлений решетки β -фазы. Ориентационное условие $[110]_{\beta} || A5_{\iota}$, $[T1T]_{\beta} || A2_{\iota}$ (1): общий вид (а) и стереографические проекции (б,в); ориентационное условие $[11T]_{\beta} || A3_{\iota}$, $[T10]_{\beta} || A2_{\iota}$ (3): стереографическая проекция (г) и вид в плоскости (T10)_{β} (д); ориентационное условие $[111]_{\beta} || A2_{\iota}$, $[T10]_{\beta} || A2_{\iota}$, $[T10]_{\beta} || A2_{\iota}$ (4), стереографическая проекция (е). На проекциях указаны следы трех плоскостей с осями симметрии $A2_{\iota}$, близких к плоскостям типа (110)_{β}, \circ - выходы направлений β -решетки

"полупроводниково-подобный" характер, но не столь ярко выраженный как для совершенной ι-фазы [11]. Предполагается, что если свойства β-твердого раствора аналогичны свойствам не совершенной ι-фазы и также являются "полупроводниково-подобными", то можно ожидать реализации в β-твердом растворе типичного для таких свойств предпереходного состояния с ближним порядком типа смещения, связанного с предстоящим фазовым превращением [12].

Установлено, что в квазикристаллообразующих сплавах можно реализовать взаимную ориентированность решеток β - и ι -фаз при скоростях закалки $10^2 < dT/dt < 10^3 - 10^4$ (К/сек). Это дало возможность осуществлять дальнейшие превращения при отжигах сплавов в условиях наиболее выгодных ориентаций β -твердого раствора и ι -фазы. Наблюдаемые ориентационные соотношения близки к основному, известному в литературе соотношению для β - и ι -решеток:

 $A2_{\iota} || [T1T]_{\beta}, A5_{\iota} || [110]_{\beta}$ (1) [13].

С помощью метода стереографических проекций был выполнен анализ ориентационного соотношения (1). Расчет угловых соотношений для осей симметрии A2₁, A5₁, A3₁ икосаэдра проведен в кубических координатах в рамках известного ориентационного условия:

 $A2_{\iota}||$ [100]_{KVŐ}, $A2_{\iota}||$ [010]_{KVŐ}, $A2_{\iota}||$ [001]_{KVŐ} (2)

Обнаружено, что существует еще три строгих ориентационных соотношения решеток β- и ι-фаз (рис.5), близких (в пределах нескольких градусов) к основному ориентационному

Рис.6. Дифракционные картины от области β ¹-фаз (а,в) и их схемы (б,г) для закаленного сплава $Al_{61}Fe_{26}Cu_{13}$: а,б - в направлении $A5_{1,}[113]_{\beta}$, $[T10]_{\beta} | A2_{1}, \Delta g || A2_{1}; в,г - в$ направлении $A2_{1,}[111]_{\beta}; \bullet, \times$ - рефлексы β - и 1-фазы, X - эффекты двойной дифракции. Величина азимутальной разориентации $[T10]_{\beta}$ и совпадающей $A2_{1}$ на дифракционных картинах соответствует ориентационному соотношению $[111]_{\beta}|| A2_{1}, [T10]_{\beta}|| A2_{1}$ (4)

ориентационному соотношению (1), которое рассматривалось до этого в литературе как единственное для β-твердого раствора и икосаэдрической фазы.структуры. Это следующие ориентационные соотношения:

$$[110]_{\beta} || A5_{\iota}, [T10]_{\beta} || A2_{\iota} \quad (1^{*}), [11\overline{1}]_{\beta} || A3_{\iota}, [T10]_{\beta} || A2_{\iota} \quad (3), [111]_{\beta} || A2_{\iota}, [T10]_{\beta} || A2_{\iota} \quad (4).$$

Показано, что наличие и величина азимутальных разориентаций между рядами рефлексов типа $(hh0)_{\beta}$ и рефлексов вдоль осей A2₁, A5₁ на дифракционных картинах, полученных в направлениях типа A5₁,[113]_β; A2₁,[111]_β (лежащих вблизи одной плоскости (110)_β), позволяют определить вид ориентационного соотношения - (3), (1), (1*), (4). Для однозначного установления ориентационных соотношений (1) или (1*), необходимо проанализировать азимутальные разориентации на дополнительной дифракционной картине, взятой вдоль направлений типа A5₁,[110]_β. Наличие и величина азимутальных разориентаций уточняется по муаровому контрасту, полученному в совпадающих рефлексах β-твердого раствора и 1-фазы.

Выполненные в соответствии с предложенным методическим подходом электронно-дифракционные эксперименты позволили определить, что для закаленных квазикристаллообразующих сплавов $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$ реализуется ориентационное соотношение $[111]_{\beta} || A2_{\iota}$, $[\bar{1}10]_{\beta} || A2_{\iota}$ (4) (рис.6), а для отожженных при низких температурах ($T_{ottk}=350^{\circ}C$, 450°C) сплавов $Al_{63}Cu_{25}Fe_{12}$ - ориентационные соотношения $[110]_{\beta} || A5_{\iota}$, $[\bar{1}10]_{\beta} || A5_{\iota}$, $[\bar{1}10]_{\beta} || A2_{\iota}$ (1) или $[110]_{\beta} || A5_{\iota}$, $[\bar{1}10]_{\beta} || A5_{\iota}$, $[\bar{1}10]_{\delta} || A5_{\iota}$, $[\bar{1}0]_{\delta} || A5_{\iota}$, $[\bar{1}0]_{\delta} || A5_{\iota}$, $[\bar{1}0]_{\delta} || A5_{\iota}$, $[\bar{$

Рис.7. Дифракционные картины с дендрита 1-фазы (а) и области β /1-фаз (б,в) для отожженного сплава Al₆₃Fe₂₅Cu₁₂ (отжиг 450 C): а – в направлении A2₁; б- в направлении A2₁, [111]_β, A5₁ || [10 $\overline{1}$], в – в направлении ~ A2₁, [121]_β, A2₁ || [101]. ×рефлексы 1-фазы: 1 - $\overline{1}/\overline{2}$ 2/3 0/0, 2 - 0/0 4/6 0/0, 2`- 0/0 2/4 0/0, 3 - 1/2 2/3 0/0, 4 - 2/4 0/0 0/0, 5 – 1/2 $\overline{2}/\overline{3}$ 0/0; 0 - рефлексы β-фазы. Отсутствие азимутальных разориентаций для совпадающих направлений A2₁,[101] и A5₁,[10 $\overline{1}$] соответствует ориентационному соотношению (**1**`) или (**1**)

что вблизи границы β/1-фаз для закаленных сплавов на дифракционных картинах, полученных с зерна икосаэдрической фазы, наблюдаются признаки нарушения идеальной квазипериодической структуры и формирования новой апериодической структуры. Образование новых апериодических структур, в том числе и модулированных структур, связывается с характерным для приграничных областей дендритов ι-фазы изменением локального состава и напряженным состоянием в этой области.

Устойчивость ориентационных соотношений β - и 1- фазы (1), (1`), (3), (4) проанализи-рована с использованием качественных критериев: критерия Маккаи (максимальной точечной группы симметрии), сформулированного для ориентационных соотношений решеток кристалл/квазикристалл, и критерия взаимного расположения плотноупакованных направлений и плоскостей β - и 1- решеток и их структурного соответствия [14,15]. Качественно рассмотрена также роль поверхностной энергии на границе раздела β/ι и неупругих механизмов (формирование дислокаций несоответствия, модулированной квазикристаллической структуры) для стабилизации ориентационных соотношений.

критерия Маккаи предпочтительным ориентационным С точки зрения соотношением является соотношение (3), которое характеризуется наиболее высокой общей точечной группой симметрии – ромбоэдрической ($\overline{3}m$) по сравнению с другими ориентационными соотношениями (1), (1), (4) с симметрией (2/m). Анализ взаимного расположения плотноупакованных плоскостей и направлений В- и 1- решеток с помощью метода стереографических проекций также указывает на предпочтительность ориентационного соотношения (3) по сравнению с другими. Во-первых, соотношение (3) характеризуется отсутствием каких-либо разориентаций для всех трех плоскостей типа (110)_в и совпадающих квазиплоскостей с осью А2₁, а для остальных трех плоскостей типа (110)₆ и совпадающих квазиплоскостей с осью А5, разориентации малы и одинаковы по величине (рис.5.г,д). Во-вторых, ориентационные соотношения (1) и (1) проявляют строгое совпадение только для одной плоскости типа (110)_в и квазиплоскости с осью A5₁, две остальные имеют разориентации, заметно большие, чем в случае соотношения (3) (рис.5.б,в,е). Сделано заключение, что при рассмотрении только упругих механизмов устойчивости реализация в отожженных квазикристаллообразующих сплавах Al₆₃Cu₂₅Fe₁₂ ориентационных соотношений (1) и (1) и отсутствие соотношения (3) может быть обусловлена только лучшим структурным соответствием квазиплоскости А5, и плоскости $(110)_{\beta}$ (соотношения (1) и (1)), чем квазиплоскости A2₁ и плоскости (110)_{β} (соотношение (3)). В результате чего понижается упругая энергия системы и вклад поверхностной энергии. Устойчивость ориентационного соотношения (4) в закаленных сплавах обсуждается с позиций неупругих механизмов и роли модулированной структуры, обнаруженной вблизи границы В/1-фаз.

Предполагается, что устойчивость низко-симметричных ориентационных соотношений (1) или (1*), связанная с понижением общей и поверхностной энергии при строгом совпадении одной пары плоскостей $(110)_{\beta}$, A5₁, будет приводить к реализации этих соотношений при трансформации $\beta \rightarrow \iota$ решетки на стадиях, когда сформировалась достаточно развитая квазиплоскость икосаэдрической структуры в образующихся доменах и развитая граница раздела β/ι . На ранних стадиях этого превращения можно ожидать конкуренции ориентационных соотношений (3) и (1).

Пятая глава посвящена электронно-дифракционному и электронномикроскопическому исследованию структуры и эффектов диффузного рассеяния βтвердого раствора в квазикристаллообразующих закаленных двухфазных (β+1) сплавах Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂ и для сравнения ряда β-сплавов Al₅₀Cu₃₃Fe₁₇, Al₅₀Cu₃₇Fe₁₂, Al₅₀Cu₄₄Fe₆, Al₄₇Cu₅₀Fe₃ в зависимости от соотношения Fe/Cu. С использованием кластерной модели замещения и подхода волн атомных смещений проанализированы эффекты диффузного рассеяния и предложены модели ближнего порядка в β -твердых растворах, богатых медью и с содержанием железа менее 10 ат.%. Структурными и физическими методами (измерения высокотемпературной магнитной восприимчивости, низкотемпературной теплоемкости, низкотемпературного электросопротивления) исследованы фазовые превращения с выделением упорядоченных фаз, связанных с наблюдаемым ближним порядком в β -твердом растворе. С целью прогнозирования модели устойчивого ближнего порядка проведены первопринципные расчеты стабильности β -Al(Cu,Fe) твердых растворов и упорядоченных на основе β -твердого раствора богатых медью фаз – η_2 -Al(Cu,Fe), τ_3 -Al₃(Cu,Fe)₂, а также влияния на стабильность замещения Cu/Fe и структурных дефектов.

<u>Структурное состояние β-твердого раствора в закаленных сплавах Al₆₁Cu₂₆Fe₁₃, <u>Al₆₃Cu₂₅Fe₁₂ (электронно-микроскопическое исследование)</u>.</u>

В результате электронно-микроскопического исследования установлено, что β(CsCl)-твердый раствор Al_{50-x}(Cu,Fe)_{50+x} (-5<x<3, Fe<5-8 ат.%) с электронной концентрацией е/а ≈ 1.71-1.95, близкой к е/а ι-фазы, в квазикристаллообразующих сплавах наряду с брэгговскими рефлексами проявляет комплекс $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$ диффузных эффектов (рис.8). Первое, это коротковолновое диффузное интенсивных рассеяние (д.р.) в виде больших искаженных сфероидов, вписанных в октаэдры с гранями типа (111)_{оцк}*; эта компонента подчиняется закону погасания для поперечнополяризованных волн и имеет максимумы в несоизмеримых позициях ~2/3<111>*_в. Второе, коротковолновое д.р. в виде малых сфероидов, вписанных в октаэдры с гранями типа (111)_{CsCl}*, с максимумами в несоизмеримых позициях ~ $1/3 < 111 > *_{B}$, ~2/3 < 111 > *. Оно связано с первой составляющей через общие диффузные максимумы ~2/3<111>*. Третье, это длинноволновое д.р., соответствующее поперечно-поляризованным волнам атомных смещений (волновые вектора типа \vec{K}_{112}), оно сопровождается твидовым контрастом на изображениях структуры.

В рамках подхода волн атомных смещений первая компонента д.р. соответствует наличию областей ближнего порядка типа ω -подобных атомных смещений, как было предложено для описания структурного состояния ОЦК сплавов Ti-3*d*Me вблизи фазового перехода $\beta \rightarrow \omega$ в работе [16]. ω -подобные атомные смещения – это неполное попарное схлапывание плоскостей типа (111)_{β}. Эта интерпретация подтверждается наблюдением "particle-like"контраста на изображениях β -твердого раствора, полученного в диффузных максимумах ~2/3<111>* $_{\beta}$ и выявляющего области ближнего порядка размером до нескольких нм (рис.9.а). Такая интерпретация подтверждается наличием характерной для этого состояния длинноволновой компоненты (рис.9.б). Вместе с тем, вторая компонента д.р., в соответствии с кластерной моделью Риддера-Амелинкса [8], отвечает ближнему порядку замещения октаэдрического типа, связанному с упорядочением в плоскостях типа (111)_{β}.

Учитывая взаимосвязь первой и второй компоненты диффузного рассеяния через общие диффузные максимумы, в работе предложено интерпретировать всю совокупность диффузных эффектов для β -твердого раствора в квазикристаллообразующих сплавах $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$ в рамках модели единого ближнего порядка смешанного типа – замещения с ω -подобными атомными смещениями. Подобный ближний порядок может быть связан с выделением некой сверхструктурной упорядоченной фазы на основе ω -структуры. Далее мы уточним диапазон составов β -твердого раствора с ближним порядком с ω -подобными смещениями и тип замещения, и будет рассматрен вопрос о возможных упорядоченных фазах, с выделением которых связан обнаруженный ближний порядок. Аналогичное состояние, как мы полагаем, следует ожидать для всех β -твердых растворов $Al_{50-x}(Cu,Me)_{50+x}$ (Me – Fe, Co, Ni) указанных составов в квазикристаллообразующих

Рис.8. Дифракционные картины сечения $(110)_{\beta}^*$ (а,б) и схемы распределения диффузного рассеяния в обратной решетке (в) и в сечении $(110)_{\beta}^*$ (г) для β -твердого раствора в сплаве $Al_{61}Cu_{26}Fe_{13}$, а - $\vec{s} \approx 0$, б - $\vec{s} \neq 0$. д, е – схемы сечений (110)* для Ti-3dMe OЦK-сплавов с ближним порядком типа ω -подобных смещений (указаны вектора поляризации атомных смещений) и для ОЦК-решетки с октаэдрическим ближним порядком замещения

Рис.9. Темнопольные электронно-микроскопические изображения β -твердого раствора в сплавах $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$: а- в диффузном рефлексе $\sim 2/3[111]_{\beta}^{*}$, ось зоны $[110]_{\beta}$, б- в рефлексе $(002)_{\beta}$, выявляется "твидовый контраст", связанный с длинноволновыми атомными смещениями в решетке β -твердого раствора, вектора \vec{K}_{12} , $\vec{e} = [\bar{1}1\bar{1}]$; $\vec{K}_{1\bar{1}2}$, $\vec{e} = [1\bar{1}\bar{1}]$

системах Al-Cu-Me (Me-Fe,Co,Ni).

<u>Зависимость структуры β -твердого раствора от соотношения концентраций</u> <u>Си/Fe в сплавах Al-Cu-Fe</u>. <u>Выделение упорядоченных фаз.</u> Для выяснения зависимости структурного состояния β -твердого раствора от соотношения Cu/Fe исследованы β -сплавы Al₅₀Cu₃₃Fe₁₇, Al₅₀Cu₃₇Fe₁₃, Al₅₀Cu₄₄Fe₆, Al₄₇Cu₅₀Fe₃. В этих сплавах содержание Al (порядка 50 ат.%) близко к концентрационной границе стабильности β -твердого раствора в системе Al-Cu-Fe (она составляет ~ 52 ат.%), а содержание Cu и Fe мы меняем в пределах 10 ат.% от состава твердого раствора в квазикристаллообразующих сплавах.

Сплавы $Al_{50}Cu_{33}Fe_{17}$, $Al_{50}Cu_{37}Fe_{13}$, $Al_{50}Cu_{44}Fe_6$. Все сплавы характеризуются дендритной кристаллизацией и наличием первично- и вторично кристаллизующегося β -твердого раствора; вторичный всегда обогащен по меди и обеднен по алюминию и железу.

С использованием локального зондового микроанализа и просвечивающей электронной микроскопии установлено, что в этих сплавах β-твердые растворы при содержании меди выше ~ 40-43 ат.% (и электронной концентрации сплава е/а более ~ 1.7) характеризуются качественно таким же д.р., как и в случае β-твердых растворов в квазикристаллообразующих сплавах (рис.10). При меньшем содержании меди β-твердый раствор проявляет типичные диффузные эффекты, связанные с низкотемпературной неустойчивостью ОЦК-решеток.

С дальнейшим увеличением содержания меди в β-твердом растворе обнаружены признаки структурного превращения с выделением некоторой фазы, с которой, очевидно, и следует связать выявленный в β-твердом растворе ближний порядок. В сплаве Al₅₀Cu₄₄Fe₆ для вторично-кристаллизующегося β-твердого раствора Al₄₉Cu₄₆Fe₅ на дифракционных картинах наблюдаются не только диффузные эффекты ближнего порядка смешанного типа, но и сверхструктурные рефлексы (рис.11.а-д). При этом, на темнопольных изображениях видны в сверхструктурных рефлексах ультрадисперсные гомогенные выделения размером до 5 нм (рис.11.е). С учетом взаимно-ориентационных соотношений выполнен расчет дифракционных картин всех интерметаллидных фаз (т₃-Al₃(Cu,Fe)₂, η₁-, η₂-Al(Cu,Fe), φ-Al₁₀Cu₁₀Fe, ξ₁-, ξ₂-Al₃(Cu,Fe)₄, ε₂-Al₃Cu₂, γ₁-, γ₂-(Al₄Cu₉), выделение которых возможно из пересыщенного по меди В-твердого раствора [17]. Рассматривался также предмартенситных фаз, но измерения вариант выделения низкотемпературной теплоемкости и электросопротивления не выявили никаких особых точек, связанных с превращениями в диапазоне температур 4-400К. Кроме того, фазовыми при изотермических отжигах при температуре 450°С наблюдается рост выделений, что указывает на температурно-диффузионный характер фазовой реакции.

Рис.10. Участки диаграммы Al-Cu-Fe. Область β-твердого раствора с ближним порядком смешанного типа заштрихована (а); указана линия электронной концентрации ι-фазы (e/a=1.86) [6] (б)

Рис.11. Электронно-дифракционные картины, полученные от областей вторичного β -твердого раствора ~ Al₄₉Cu₄₆Fe₅ (сплав Al₅₀Cu₄₄Fe₆): а, б - области с ближним порядком типа замещения и ω -подобных смещений; в-д - области с ультрадисперсными частицами атомно-упорядоченной фазы η_1 -типа AlCu(Fe). Наблюдаются сверхструктурные рефлексы в позициях 1/3, 2/3 <111> $_{\beta}$ *, 1/3, 2/3 <111> $_{\beta}$ *, 1/3, 2/3 <111> $_{\beta}$ *. Показаны рефлексы β -фазы. е- темнопольное изображение в сверхструктурном рефлексе 1/3 (112) $_{\beta}$

Рис.12. Темнопольное электронно-микроскопическое изображение антифазных границ в упорядоченной ф-фазе в сплаве $Al_{47}Cu_{50}Fe_3$, отожженном при 650°C (а), и температурная зависимость магнитной восприимчивости закаленного сплава $Al_{47}Cu_{50}Fe_3$ демонстрирует поведение, характерное для превращения $\beta \leftrightarrow \phi$ (б): 1- при нагреве, 2 – при охлаждении

Обнаружено, что вся экспериментально наблюдаемая совокупность дифракционных картин может быть связана с высокотемпературной упорядоченной фазой типа η_1 -AlCu (a=4.015 Å, e=12.02 Å, c=8.652 Å), допированной некоторым количеством атомов железа, и которая выделяется при закалке от высоких температур. При этом, для этой фазы была принята одна из предлагаемых в литературе пространственных групп - $P2_122_1$ и следующие размерно-ориентационные соотношения с β-решеткой [001] η_1 || [001] β_6 , [100] η_1 || [110] β_6 , $a_{\eta_1} \approx \sqrt{2} a_{\beta} = 2d_{110\beta}, b_{\eta_1} \approx 3\sqrt{2} a_{\beta} = 6d_{110\beta}, c_{\eta_1} \approx 3a_{\beta}$; учтены все возможные варианты ориентации выделений η_1 -фазы в β-решетке. В нашей работе предложена модель кристаллической структуры η_1 -фазы, отвечающая пространственной группе $P2_122_1$ и характеризующаяся наличием вакансий в медной подрешетке, замещением Cu—Al и таким же локальным упорядочением в слоях типа (111) β_6 , как и в случае низкотемпературной модификации η_2 -AlCu [17].

Сплав Al₄₇Cu₅₀Fe₃. В этом сплаве с использованием просвечивающей электронной микроскопии и измерений высокотемпературной магнитной восприимчивости выявлено известное фазовое превращение $\beta \rightarrow \phi$ -Al₁₀Cu₁₀Fe [17] при изотермическом отжиге при Т_{отж}=650°С (рис.12). Упорядоченный характер ф-фазы и диффузионный механизм ее образования подтверждается наблюдением на электронно-микроскопических изображениях антифазных границ (рис.12.а). Обнаружено, что β-твердый раствор в закаленном исходном состоянии сплава Al₄₇Cu₅₀Fe₃ также проявляет диффузное рассеяние, характерное для ближнего порядка смешанного типа (замещения и ω -подобных смещений), аналогичное наблюдавшемуся нами в сплаве Al₅₀Cu₄₄Fe₆ от вторичного βтвердого раствора состава Al₄₉Cu₄₆Fe₅.

По результатам исследования сплавов $Al_{50}Cu_{44}Fe_6 Al_{47}Cu_{50}Fe_3$ в закаленном и отожженном состоянии ближний порядок смешанного типа (замещения и ω -подобных смещений) рассматривается как предпереходное состояние к фазовым превращениям с образованием упорядоченных фаз близких составов η_1 -AlCu(Fe), ϕ -Al_{10}Cu_{10}Fe.

<u>Ближний порядок в β-твердом растворе Al-Cu-Fe и кристаллические структуры</u> <u>атомно-упорядоченных фаз τ -, η -, ξ -, ϕ - ε -, γ -. Проведен сравнительный анализ кристаллических структур и типа упорядочения η - и ϕ - фаз, а также фаз Al-Cu-Fe, близких к ним составов, с целью ответить на ряд вопросов. Первое, как соотносятся характеристики их локальной структуры с моделью ближнего порядка, предложенной нами ранее по анализу диффузного рассеяния в β-твердом растворе? Второе, почему практически одна и та же картина диффузного рассеяния и соответственно модель ближнего порядка связана с выделением различных фаз (η_1 - и ϕ -)? В качестве базовой для η_1 -фазы использована η_2 структура, для ϕ -фазы – ξ -структура в соответствии с работой [17].</u>

Анализ показал, что для всех кристаллических упорядоченных на основе β -твердого раствора фаз - τ -Al₃Cu₂, η_2 -AlCu, ξ_2 -Al₃Cu₄ (базовая для ϕ -фазы), ϵ_2 -Al₂Cu₃ - характерна одна и та же в различной степени выраженная особенность структуры. Упорядочение в этих фазах сопровождается ω -подобными смещениями (попарным полным или частичным схлапыванием) плоскостей типа (111)_{β}, а фаза ϵ_2 -Al₂Cu₃ является в чистом виде упорядоченной ω -фазой со структурой типа Ni₂Al (рис.13). Кроме того, упорядочение в плоскостях типа (111)_{β} для этих фаз может быть описано октаэдрическим ближним порядком, но в зависимости от состава фазы в различных подрешетках. На рисунке 14 рассмотрены два крайних состава –Al₃Cu₂ (τ_3 -) и Al₂Cu₃ (ϵ -). Для составов с избытком алюминия октаэдрический ближний порядок описывается упорядочением вакансий и 3d-атомов в слоях (111)_{β} (по типу τ_3), для стехиометрических составов (111)_{β} (Al и 3d-металл). Можно видеть, что фазы промежуточных составов η_2 -AlCu, ξ_2 -Al₃Cu₄ содержат мотивы с упорядочением по ϵ -типу.

Рис.13. Кристаллические структуры атомно-упорядоченных фаз на основе β (CsCl)-раствора в системе Al-Cu (a), и структура Ni₂Al (тип упорядоченной ω -фазы) (б), ω -подобные (продольно-поляризованные в направлении <111> β) смещения слоев атомов Al и Cu при формировании структур η_2 -, ξ_2 - (базовая для ϕ), ϵ_2 - фаз (в)

Рис.14. Схемы октаэдрического окружения для позиций медной подрешетки (содержит вакансии и атомы меди) в структуре τ_3 -Al₃Cu₂ (тип Al₃Ni₂) (а) и для позиций алюминиевой подрешетки (содержит атомы алюминия и меди) в структура Al₂Cu₃ (тип -Ni₂Al) (б)

Таким образом, модель ближнего порядка смешанного типа (замещения с ω подобными атомными смещениями), предложенная в результате анализа картин диффузного рассеяния в β-твердом растворе Al_{50-x}(Cu,Fe)_{50+x} (-5<x<3, Fe<5-8 ат.%), и факт наблюдения этого диффузного рассеяния перед выделением различных упорядоченных фаз (η₁-, φ-) согласуются с выявленными общими особенностями кристаллической структуры этих фаз - ω -подобными смещениями плоскостей типа (111)_β и упорядочением в этих плоскостях, описываемым октаэдрическим типом кластеров. Причем, в зависимости от состава (избыток лил недостаток алюминия) упорядочение реализуется в различных подрешетках. <u>Первопринципное исследование стабильности и структурных дефектов твердого</u> <u>раствора β -AlCu_xFe_{1-x} и фаз, упорядоченных на его основе- (τ_3 -Al₃(Cu,Fe)₂, η_2 -Al(Cu,Fe)). В результате анализа, проведенного нами выше, для компоненты замещения ближнего порядка, которую мы обнаружили в твердых растворах Al_{50-x}(Cu,Fe)_{50+x} (-5<x<3, Fe<5-8 ат.%), были предложены две модели. Для составов с избытком алюминия - типа τ_3 -Al₃(Cu,Fe)₂, для составов с недостатком алюминия - типа упорядоченной Al₂Cu₃ (структурный тип Ni₂Al). Как было показано выше, фаза η_2 -Al(Cu,Fe) содержит мотивы упорядоченной ω -фазы. В данном разделе с целью прогнозирования модели устойчивого ближнего порядка с привлечением первопринципных квантово-химических методов изучено влияние структурных дефектов и допирования атомов железа на стабильность этих бинарных фаз. Предварительно выполнены исследование стабильности модельного β (CsCl)-твердого раствора.</u>

Влияние структурных дефектов (в том числе и дефектов замещения) на стабильность указанных фаз изучено в рамках теории функционала электронной плотности неэмпирическим псевдопотенциальным методом с применением программы VASP (Vienna Ab-initio Simulation Package) [18] с обобщенным градиентным приближением для обменно-кореляционного потенциала [19]. Для того, чтобы выявить роль магнетизма, расчеты выполнены в спин-поляризованном и спин-ограниченном вариантах.

β-АlCu_xFe_{1-x}. Атомное замещение и дефектная структура моделировались кубической шестнадцатиатомной суперячейкой $Al_8Cu_{8x}Fe_{8(1-x)}$, содержащей 8 ячеек с CsClрешеткой. Для интервала составов $Al_8Cu_2Fe_6$ - $Al_8Cu_6Fe_2$ эффекты замещения атомов железа на медь рассматривались для всех возможных конфигураций в расположении этих атомов в одной подрешетке. Фазы со структурой CsCl (FeAl и метастабильная фаза CuAl) моделировались двухатомной ячейкой. Энергетические характеристики разупорядочения между двумя подрешетками CsCl-AlCu_xFe_{1-x} фазы (антиузельные дефекты) и образования вакансий промоделированы для составов $AlCu_{0.125}Fe_{0.875}$, $AlCu_{0.875}Fe_{0.125}$; энергия образования дефектов оценивалась относительно комплектных фаз CsCl-FeAl, CsCl-CuAl для концентрации дефектов, равной 1/16.

Установлено, что замещение атомами меди позиций в подрешетке железа (Cu \rightarrow Fe) в β (CsCl)-FeAl является наиболее энергетически выгодным и возможно вплоть до составов AlCu_{0.875}Fe_{0.125} (Al₅₀Cu_{43.5}Fe_{6.5}). Нелинейный вид расчетных концентрационных зависимостей энтальпии образования ΔH (AlCu_xFe_{1-x}) и оптимизированного параметра решетки твердого раствора CsCl-AlCu_xFe_{1-x} указывает на неидеальный характер твердого раствора и на усиление химического связывания при его формировании (рис.15).

Рис.15. Зависимости энтальпии образования (а) и оптимизированных параметров решетки (б) модельных структур CsCl-AlCu_xFe_{1-x} от содержания атомов меди в подрешетке железа. 1, 2варианты структур замещения с кубической оптимизированной решеткой, спин-ограниченные и спин-поляризованные расчеты; 3- все варианты структур замещения, спин-поляризованные расчеты; 4- орторомбическая стабильная η₂-фаза AlCu; 5- эксперимент

Анализ энергетических характеристик образования антиузельных дефектов на модельных фазах β -AlCu_{0.125}Fe_{0.875} и β -AlCu_{0.875}Fe_{0.125} показал, что наибольшей стабильностью обладают конфигурации с минимальным количеством связей Cu-Fe в первой координационной сфере, что соответствует малой степени перекрывания d-Cu и d-Fe состояний в расчетном электронно-энергетическом спектре AlCu_xFe_{1-x}. Это определяет не только основной вариант допирования (Cu \rightarrow Fe, Fe \rightarrow Cu), но и возможный тип устойчивого антиузельного дефекта 3*d*-металла и эффекты разупорядочения. Для составов AlCu_{0.125}Fe_{0.875} более стабилен антиузельный дефект атомов Fe, в случае составов AlCu_{0.875}Fe_{0.125} более стабилен антиузельный дефект атомов Cu (Cu \rightarrow Al). В случае промежуточных составов прогнозируются устойчивыми оба типа антиузельных дефектов.

Образование антиузельного дефекта атомов железа (Fe \rightarrow Al), как и в случае сплава B2-FeAl(CsCl), характеризуется большим локальным магнитным моментом (2.40 μ_B) и связывается с ослаблением гибридизации Al3s,3p и Fe3d состояний и с уменьшением зарядового переноса между состояниями со спином вверх и вниз [20]. Предполагается, что именно подобные антиузельные дефекты определяют экспериментально наблюдаемый нами низкотемпературный вклад Кюри-Вейса в магнитную восприимчивость быстрозакаленных сплавов β -AlCu_{0.66}Fe_{0.34}.

 τ_3 -Al₃(Cu,Fe)₂, η_2 -Al(Cu,Fe). Для τ_3 -Al₃(Cu,Fe)₂ нестехиометрия по подрешетке (Cu,Fe) и эффекты допирования атомами Fe промоделированы для 24-х атомной гексагональной суперячейки, включающей 4 ячейки с упаковкой по типу CsC с 5% атомной концентрацией железа. Эффекты допирования Fe в η_2 -AlCu и предпочтительные позиции замещения моделировались на 40-атомной ортогональной ячейке, соответствующей двум элементарным ячейкам η_2 -AlCu с 2.5% атомной концентрацией железа. Концентрации атомов железа выбраны в соответствии с составами областей устойчивости этих фаз при допировании Fe. Основные типы локализации атомов железа в структурах τ_3 -Al₃(Cu,Fe)₂, η_2 -Al(Cu,Fe) представлены на рисунке 16.

Рис.16. Схемы допирования атомов Fe в структуры τ_3 -Al₅₇Cu₃₈Fe₅ (суперячейка - Al₁₂Cu₈Fe) (а) и η_2 -AlCu (б). Указаны связи атомов железа первой и второй координационных сфер

Таблица 1. Энтальпии (ΔH , $\partial B/\phi$.е.) и энергия образования ΔE ,($\partial V/\phi$.е.)*, отношение *с/а* и магнитный момент атомов железа ММ (μ_B) для различных вариантов допирования Fe в решетку типа τ_3 -Al₃Cu₂

Состав и тип замещения	-Δ <i>H</i> ,(эB/φ.e.)	$\Delta E, (\Im V/\Phi.e.)^*$	c/a	MM
Al _{0.6} Cu _{0.4}	0.762		1.218	-
(1) $Al_{60}Cu_{35}Fe_5$ (Fe \rightarrow Cu)	1.086	-0.313	1.202	0.0
(2) $Al_{60}Cu_{35}Fe_5$ (Fe \rightarrow V, V \rightarrow Cu)	0.802	-0.03	1.236	1.03
(3) $Al_{57}Cu_{38}Fe_5$ (Fe \rightarrow Cu, Cu \rightarrow V)	1.062	-0.288	1.217	0.01
(4) $Al_{57}Cu_{38}Fe_5$ (Fe \rightarrow Vac)	0.954	-0.187	1.236	1.17
(5) $Al_{55}Cu_{40} Fe_5 (Fe \rightarrow Al(I))$	0.630	0.14	1.212	2.55
(6) $Al_{55}Cu_{40}Fe_5$ (Fe \rightarrow Al(II))	0.714	0.058	1.215	2.11

* Энергия образования (ΔE^{*} (эВ.ф.е.)) рассчитана относительно фазы Al₃Cu₂. Al(I), Al(II) – два типа позиций атомов алюминия в структуре типа Al₃Ni₂.

Таблица 2. Энтальпии (ΔH , $\partial B/\phi$.е.) и энергии образования (ΔE^* , $\partial B/\partial$.я.), объем элементарной ячейки для различных вариантов допирования Fe в решетку η_2 -AlCu

Состав и тип замещения	- <i>∆Н</i> ,(эВ/ф.е.)	$\Delta E, (\Im V/\Im. \pi)^*$	$V, Å^3$	MM
AlCu	0.423		282.45	
(1) $Al_{50}Cu_{47.5}Fe_{2.5}$ (Fe \rightarrow CuI)	0.437	-0.15	281.4	0.0
(2) Al_{50} Cu _{47.5} Fe _{2.5} (Fe \rightarrow CuII)	0.422	0.02	281.8	0.16
(3) $Al_{50}Cu_{45}Fe_{2.5}$ (Fe \rightarrow Cu III)	0.439	-0.16	280.82	0.0
(4) $Al_{47.5}Fe_{2.5}Cu_{50}$ (Fe \rightarrow Al(I))	0.384	0.26	281.83	2.29
(5) $Al_{47.5}Fe_{2.5}Cu_{50}$ (Fe \rightarrow Al(II))	0.378	0.50	281.43	2.58
(6) $Al_{47.5}Fe_{2.5}Cu_{50}$ (Fe \rightarrow Al(III))	0.359	0.63	281.57	2.76

Основным результатом изучения допирования атомов железа в решетку упорядоченных фаз τ_3 -Al₃(Cu,Fe)₂, η_2 -Al(Cu,Fe) является установления эффекта стабилизации этих фаз по сравнению с недопированными. Показано, что стабилизация реализуется для единственного варианта допирования, когда атомы железа замещают структурные позиции меди (см. таблицы 1,2). Наименее энергетически выгодными являются реакции замещения Fe→Al. Подобное замещение, как и в случае FeAl(CsCl) и β-AlCu_xFe_{1-x}, сопровождается ростом локального магнитного момента и связано с ослаблением гибридизации Al3s,3р и Fe3d состояний. Эти данные дают основание прогнозировать стабилизацию связанного с выделением этих упорядоченных фаз ближнего порядка в сплавах Al-Cu, допированных небольшими концентрациями атомов железа, и, в целом, поддерживают предлагаемые нами (по результатам эксперимента) модели ближнего порядка на основе τ₃-фазы и η-фазы (сверхструктуры ω-типа) в β-растворах Al-Cu-Fe.

Установлен факт формирования и определена модель ближнего порядка смешанного типа (с ω -подобными смещениями) для β -твердых растворов $Al_{50-x}(Cu,Fe)_{50+x}(-5<x<3, Fe<5-8 at.%)$ в квазикристаллообразующих (1+ β) и β -сплавах Al-Cu-Fe. Определена его связь с рядом упорядоченных на основе β -твердого раствора фаз (τ -Al_3(Cu,Fe)_2, η_1 -Al(Cu,Fe), ϕ -Al_1₀Cu₁₀Fe), которые имеют общую структурную особенность - ω -подобное смещение плоскостей типа (111)_{β} и упорядочение этих плоскостей. Выяснен эффект стабилизации упорядоченных на основе β -твердого раствора фаз τ_3 -Al_3Cu₂ и η_2 -AlCu при частичном замещении атомами Fe структурных позиций Cu и сделан прогноз устойчивости ближнего порядка на основе указанных фаз в тройных β -твердых растворах.

B шестой главе изложены результаты систематического электронномикроскопического исследования структуры квазикристаллообразующих сплавов Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂ (β+1), отожженных при температурах 250°C, 450°C, 550°, 650°C, а также данные о структуре отожженных (T_{от} =350°C, 450°C) β-сплавов Al₅₀Cu₃₃Fe₁₇, Al₅₀Cu₄₄Fe₆. Сплавы Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂ отвечают крайним составам по содержанию алюминия в области стабильности 1-фазы. На основании полученных данных обсуждается конкретный механизм превращения β→ι с учетом реальной структуры β-твердого раствора, промежуточных кристаллических фаз и наблюдаемых взаимно-ориентационных соотношений β/ı. Проанализирована дефектная структура формирующейся икосаэдрической фазы. Для оценки степени совершенства 1-фазы проведены РФЭС исследования валентной полосы и остовных электронных спектров, а также измерения низкотемпературной теплоемкости и плотности состояний.

<u>Низкотемпературные превращения (250°С, 350°, 450°С) в В-фазе в сплавах</u> $\underline{Al_{61}Cu_{26}Fe_{13}}, \quad \underline{Al_{63}Cu_{25}Fe_{12}},$ $\underline{Al_{50}Cu_{33}Fe_{17}}, \quad \underline{Al_{50}Cu_{44}Fe_{6.}}$ Результаты электронномикроскопических исследований квазикристаллообразующих (β+1) сплавов, позволили впервые установить, что β-твердый раствор в этих сплавах, который характеризуется предпереходным состоянием и смешанным типом ближнего порядка замещения с оподобными атомными смещениями (см. гл.5), испытывает низкотемпературные сопровождается превращения. Превращение не заметным перераспределением компонентов между областями β-твердого раствора и ι-фазы и происходит при температуре отжига 450°С и только в сплаве, обедненном по алюминию Al₆₁Cu₂₆Fe₁₃. Установлено, что превращение сопровождается гомогенным выделением кубоидных частиц (рис.17).

Рис.17. Выделение кубоидных частиц в β -областях сплава $Al_{61}Cu_{26}Fe_{13}$, отожженного при 450°С. Темнопольные изображения, полученные в рефлексах $(020)_{\beta}$ (a), $(041)_{3C}$ (б), ось зоны $[100]_{\beta}$. Дифракционные картины: $[100]_{\beta}$ (в), $[110]_{\beta}$ (г), $[120]_{\beta}$ (д), $[113]_{\beta}$ (е). Указаны рефлексы β -твердого раствора

Рис.18. Дифракционные картины, полученные от области β/ι и ι -зерна вблизи направлений: A2P_{ι}, [010]_{3C} (a), A2P_{ι} (б), A2 ι , [$\overline{1}1\overline{1}$]_{3C} (Γ), A2 $_{\iota}$ (д). На дифракционной картине (a) белые стрелки указывают положения рефлексов ι -фазы. в,е - схемы дифракционных картин (a) и (Γ); + - рефлексы ι -фазы, • - рефлексы 3C фазы

Микродифракционные картины, полученные от кубоидных частиц, всегда проявляют наряду с матричными рефлексами β -фазы сверхструктурные рефлексы в положениях 1/3 и 2/3 для всех направлений обратной решетки β -фазы (рис.17.в-е). Соответствующая решетка описывается как кубическая с параметром $3a_{\beta}$. Вместе с тем, на дифракционных картинах с осями зон типа [111]_{β} сверхструктурные рефлексы по 1/3 и 2/3 обнаруживаются только в одном направлении типа <hh0>_{β}* (рис.18.г). Характерным является тот факт, что это направление всегда параллельно оси А51 для сечения, взятого вдоль направления А2₁ икосаэдрической фазы (рис.18.г,д).

Аналогичное превращение с выделением кубоидных частиц, проявляющих сверхструктурные отражения в позициях 1/3, 2/3 для всех направлений обратной β -решетки, наблюдалось и в отожженном при 450°С сплаве $Al_{50}Cu_{33}Fe_{17}$. Выделение частиц происходило в отдельных областях вторичного β -твердого раствора, которые характеризовались тем же диффузным рассеянием (и той же моделью ближнего порядка смешанного типа), что и в квазикристаллообразующих сплавах (см. гл.5).

Расчет сечений обратной решетки и анализ характера и морфологических особенностей выделений показывают, что выделяющаяся в виде кубоидных частиц фаза (как в квазикристаллообразующих, так и в β -сплаве Al₅₀Cu₃₃Fe₁₇) не соответствует ни одной из известных фаз в системах Al-Cu-Fe, Al-Cu. Найденная фаза, названная нами 3C, наиболее близка к группе η -фаз и метастабильной фазе, наблюдавшейся в работе [21]. По двум совпадающим сечениям, взятым вдоль A21, [111]_{3c} и вдоль A2P1, [010]_{3c}, установлено, что между 3C- и 1-фазами выполняются два близких точных ориентационных соотношения (**1**) -[10T]_{3c} || A5₁, [T1T]_{3c} || A2₁ и типа (**1***) - [10T]_{3c} || A5₁, [101]_{3c} || A2₁ (рис.18).

Рис.19. Области 1-фазы с высокой плотностью плоских дефектов в сплаве $Al_{61}Cu_{26}Fe_{13}$ ($T_{or}=550^{\circ}C$). а -темнопольное изображение в рефлексе $\vec{g} = (T/22/30/0)_{1}$, б – соответствующая дифракционная картина в направлении $A2_{1}$, в –дифракционная картина в направлении $A2P_{1}$, г –стереографическая проекция для ориентации в направлении $A2_{1}$, указаны след дефекта в квазиплоскости с осью $A5_{2}$ и направления векторов обратной 1-решетки

Таким образом, при низкотемпературных отжигах квазикристаллообразующих сплавов обнаружена новая 3С фаза, которая гомогенно выделяется в β -твердом растворе состава Al_{50-x}Cu_{45+x}Fe₅ (-5 < x < 3). Она описывается кубической решеткой с параметром $3a_{\beta}$ и характеризуется возникновением модуляций в направлениях типа <hh0>. 3C-фаза рассматривается как η-модифицированная. Ближний порядок смешанного типа в исходном β -твердом растворе является переходным состоянием к превращению с выделением этой фазы, как и в случае выделения η_1 -упорядоченной фазы, обнаруженной нами ранее (гл.5).

<u>Формирование однофазной икосаэдрической структуры в сплавах $Al_{61}Cu_{26}Fe_{13}$,</u> <u> $Al_{63}Cu_{25}Fe_{12}$ ($T_{om}=550$ °C, $T_{om}=650$ °C). Дефекты *i-фазы*. В результате электронномикроскопических исследований сплавов $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$ с исходной двухфазной структурой (β +1), отожженных в диапазоне температур 550-700°C, обнаружены следующие закономерности формирования икосаэдрической структуры и типы ее дефектов.</u>

Впервые установлено, что для сплава $Al_{61}Cu_{26}Fe_{13}$ при $T_{oT\#}=550^{\circ}C$ в междендритных областях, которые в исходном состоянии имели структуру β -твердого раствора, формируется икосаэдрическая структура с очень высокой плотностью плоских дефектов (рис.19). При этом структура исходной 1-фазы остается практически неизменной. При $T_{oT}=650^{\circ}C$ происходит частичный отжиг этих дефектов, при температурах $T_{oT}=700^{\circ}C$ образуется бездефектная полизеренная 1-фаза. Для сплава $Al_{63}Cu_{25}Fe_{12}$ однофазная 1-структура формируется при температуре ниже 550°C; при температуре отжига 550°C осуществляется известная обратимая трансформация 1 \leftrightarrow R- аппроксимант.

Рис.20. Электронно-микроскопические изображения пластинчатых прослоек в 1сплаве $Al_{61}Cu_{26}Fe_{13}$ $(T_{or} = 650^{\circ}C)$ в рефлексах: а - 1/2 2/3 0/0, ориентация в направлении А21, дефект параллелен пучку; б - $\overline{1}/\overline{2}$ 2/3 0/0, ориентация в направлении A2P₂, дефект наклонен к пучку; в - 1/2 $\overline{2}/\overline{3}$ 0/0, ориентация в направлении ~А2₁, дефект параллелен Обозначения осей пучку. на стереографической проекции на рис.19г

Проведено электронно-микроскопическое исследование структурных характеристик обнаруженных дефектов 1-фазы. Анализ следов (рис.19) и интерпретация контраста, выполненная в приближении рассеяния в кристаллических материалах, определяют две плоскости залегания этих дефектов, соответствующие двум квазиплоскостям с осями А51. На соответствующих дифракционных картинах, взятых в направлениях A2₁ и A2P₁, наблюдаются диффузные тяжи, проходящие через 1-рефлексы в направлении, перпендикулярном одной из плоскостей залегания дефектов (преимущественной) с осью А5₂ (рис.19.б,в). На дифракционных картинах четко не выявляются отражения от других фаз, отмечается лишь слабый эффект смещения рефлексов 1-фазы. В соответствии с интерпретацией подобных диффузных эффектов (тяжей) в квазикристаллических фазах, мы можем связать их либо с высокой плотностью плоских дефектов, либо в равной степени с ультратонкими прослойками до 3-5 нм (врастаниями).

Более тщательный анализ дифракционного контраста на плоских дефектах выполнен на сплавах $Al_{61}Cu_{26}Fe_{13}$, отожженных при 650°С, для которых плотность этих дефектов существенно ниже (рис.20). Он свидетельствует в пользу варианта прослоек. Показано, что для этих сплавов на темнопольных изображениях, когда плоскость дефекта перпендикулярна плоскости фольги, проявляется ориентационный контраст либо контраст за счет различий в структурных факторах, характерный для прослоек другой фазы (рис.20. а,в). В случае ориентации фольги в направлении $A2P_2$, когда плоскость дефекта наклонна к электронному пучку, наблюдается осциллирующий контраст с полосами равной глубины, параллельными линии пересечения плоскости залегания дефекта с плоскостью фольги (рис.20.б). Изображения дефектов были получены в сильных матричных рефлексах 1-фазы.

Наблюдаемый контраст аналогичен контрасту типа полос смещения, типичному для включений в кристаллической матрице в случае действующего матричного отражения и наличия вектора смещения \vec{R} матричной плоскости на границе с включением. На дифракционных картинах, полученных от скоплений этих дефектов, наблюдаются диффузные тяжи в направлении типа А51, перпендикулярном плоскости залегания.

Рассмотрены возможные механизмы образования ультратонких прослоек в 1-фазе в отожженных квазикристаллообразующих сплавах. Полагаем, что формирование подобных дефектов не может быть вызвано пластической деформацией 1-фазы по причине существенных, выявленных нами морфологических отличий наблюдаемых дефектов от деформационных плоских дефектов упаковки, характерных для 1-фазы [1]. Анализ показывает, что обнаруженные дефекты являются результатом структурных превращений, протекающих при отжигах в междендритных областях с исходной β-структурой. В силу существующей топологической несовместимости кристалла и квазикристалла [22], кооперативное смещение атомов в 3D пространстве, которое описывает эти плоские дефекты, не может отражать механизм структурной перестройки кристалл → квазикристалл. Эти прослойки в 1-фазе можно рассматривать как дефекты роста квазипериодической структуры.

Один из наиболее вероятных вариантов - это дефекты, сопровождающие рост квазипериодической структуры из 3С фазы, образующейся при более низких температурах. Следует отметить, что наличие одного преимущественного варианта плоских дефектов (прослоек) с осью А5 коррелирует с наличием единственного направления А5, которое параллельно направлению типа [101]_{3c} в рамках установленных ориентационных соотношений ($[10T]_{3c} || A5_1$, $[T1T]_{3c} || A2_1$, (1), или $[10T]_{3c} || A5_1$, $[101]_{3c} || A2_1$, (1*)) и вдоль которого возникают модуляции в структуре 3С. Это может определять единственную предпочтительную (110) плоскость перестройки 3С структуры и роста квазипериодической структуры. С точки зрения состава междендритных областей, обедненных по алюминию и железу, рост квазипериодической структуры может начинаться с прослоек двумерных (2D) пентагональных аппроксимантных фаз.

Впервые установлено, что для сплава $Al_{61}Cu_{26}Fe_{13}$ (β + ι) в процессе отжигов (T=550-650°) формируется однофазная ι -структура, содержащая области с различной (в зависимости от температуры отжига) концентрацией плоских дефектов в виде ультратонких врастаний по квазиплоскостям с осью типа A5. Предложен ростовый механизм их формирования в процессе образования ι -структуры из 3С фазы.

<u>Механизмы структурной трансформации β -твердый раствор \rightarrow икосаэдрическая фаза.</u> Результаты исследования квазикристаллобразующих сплавов после изотермических отжигов представляют интерес не только с точки зрения выяснения дефектной структуры 1фазы, но и позволяют анализировать механизмы структурно-фазовых превращениях $\beta \rightarrow 1$.

Можно говорить о двух вариантах структурно-фазовых превращений $\beta \rightarrow \iota$ при изотермических отжигах: β -твердый раствор с ближним порядком смешанного типа с ω -подобными смещениями либо непосредственно превращается в икосаэдрическую фазу (сплав Al₆₃Cu₂₅Fe₁₂), либо через промежуточную 3С-фазу, которая также образуется из β -твердого раствора с ближним порядком смешанного типа (сплав Al₆₁Cu₂₆Fe₁₃); во втором случае ι - фаза образуется с большим количеством ростовых двумерных дефектов (механизм рассмотрен в предыдущем разделе) (см. схему превращений на рисунке 21).

Рассматривая механизм установленных структурно-фазовых превращений $\beta \rightarrow \iota$ с позиций перестройки локальной атомной структуры, можно сделать заключение об участии областей ближнего порядка с ω -подобными атомными смещениями в перестройке локальной структуры β -решетки в икосаэдрическую. Отметим, что анализ механизма превращения кристалл \rightarrow квазикристалл с позиций перестройки локальной атомной структу-

Al₆₁Cu₂₆Fe₁₃

Рис.21. Структурно-фазовые превращения в β-твердом растворе (с ближним порядком ωподобных атомных смещений и замещения) и стадии формирования совершенной ι-фазы при изотермических отжигах (450°C, 550°C, 650°C) закаленных квазикристаллообразующих сплавов Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂ (β+ι)

ры соответствует представлениям о квазикристаллах как кластерных фазах и не противоречит моделям, описывающим эти трансформации с позиций упаковочных элементов. Сделанный нами вывод полностью согласуется с предложенной позднее в работе Янцьзин [23] кристаллогеометрической моделью ближнего порядка ω -типа в β -твердом растворе, когда из 4-х стержней октаэдрических кластеров ω -фазы формируется 26 атомный кубооктаэдрический кластер (рис.22). В рамках этой модели с использованием построения Пирсона можно восстановить структурную взаимосвязь икосаэдрических кластеров и ω -фазы (или областей с ω -подобными атомными смещениями) (рис.22.6-г). Совсем недавно наши выводы нашли подтверждение и в модели превращения $\iota \rightarrow \beta$ также с участием ω -кластеров, полученной в рамках многомерной кристаллографии [24].

В нашей работе проанализированы ориентационные соотношения икосаэдрического и кубооктаэдрического кластеров (рис.22). Обнаружено, что строго выполняется ориентационное соотношение $[11T]_{\beta} || A_{3_1}, [T10]_{\beta} || A_{2_i}$ (3), а основное соотношение $[110]_{\beta} || A_{5_i}, [T1T]_{\beta} || A_{2_i}$ (1) выполняется не точно. Это согласуется с высказанным нами ранее предположением о том, что на ранних стадиях превращений ориентационные соотношения

Рис.22. Кристаллогеометрическая модель образования 26-атомного кластера упорядоченной на основе β-твердого раствора γ-фазы из 4-х возможных стержней октаэдрических кластеров ω-фазы [28] (а) и схемы формирования пересекающихся икосаэдров (указан один) в 26-атомном кластере (б-г). в,г – проекции 26-атомного кластера и икосаэдра соответственно в направлении [11 T]_γ (A3i || [11 T]_γ) и в направлении [01 T]_γ (A5i близко к [01 T]_γ)

(1) и (3) конкурируют, и соотношение (1) становиться устойчивым при формировании достаточно развитой границы раздела β/t (см. гл.4).

Механизм трансформации $\beta \rightarrow \iota$ с участием областей с ω -подобными атомными смещениями предлагается нами наряду с системой Al-Cu-Fe также и для квазикристаллических систем на основе титановых сплавов Ti-Fe(Cr,Mn), Ti-Fe(Cr,Mn,V)-Si, Ti-Fe(Cr,Mn,V)-Si-O, для которых превращения $\beta \rightarrow \iota$ (или $\beta \rightarrow$ рациональный аппроксимант) и $\beta \rightarrow \omega$ возможны в близких интервалах концентраций. По данным Мессбауэровской спектроскопии предполагается некоторая структурная взаимосвязь между икосаэдрическими кластерами и ближним порядком с ω -подобными смещениями в сплавах Ti-Fe [25].

<u>Рентгеновская фотоэлектронная спектроскопия и низкотемпературная</u> <u>теплоемкость квазикристаллообразующих и β-сплавов системы Al-Cu-Fe</u>. В предыдущих разделах этой главы для анализа степени совершенства формирующейся в сплавах 1-фазы использованы электронно-микроскопические и дифракционные методы. Как известно из литературных и наших данных, сплавы с совершенной 1-структурой проявляют аномалии физических свойств, связанные с наличием псевдощели и низкой плотностью состояний на уровне Ферми. Одним из прямых методов изучения электронной структуры является рентгеновская фотоэлектронная спектроскопия (РФЭС). Наиболее полно возможности этого метода для характеристики совершенной 1-структуры изучены на монозеренных образцах [3,4,26]. В этом разделе мы оценили возможности РФЭС метода для определения совершенства 1-фазы в полизеренных сплавах Al-Cu-Fe по спектрам остовных и валентных уровней.

Для полизеренных сплавов - Al₆₃Cu₂₆Fe₁₁ в закаленном состоянии (β + ι) и после оптимальных отжигов (*i*-фаза) и β -твердого раствора Al₅₀Cu₃₃Fe₁₇ - при использованием чередующихся циклов ионного распыления и температурной обработки отработаны режимы формирования поверхности, свободной от примесей, с составами, близкими к объемным значениям. Для этих сплавов получены спектры остовных уровней Fe2p (рис.23) Сравнение спектров показывает, что в случае оптимально отожженной ι -фазы Fe2p_{3/2}-полоса обладает меньшей шириной и меньшей асимметрией спектральной линии по

Рис.23. РФЭ-спектры Fe2*p*-электронных состояний железа (а) и валентных полос (б) двух сплавов *i*-Al-Cu-Fe и β-Al-Cu-Fe после подготовки поверхности. На рис. (б) в верхней части показан спектр валентной полосы двухфазного закаленного сплава Al₆₃Cu₂₆Fe₁₁ (β+ι) без оптимального отжига

сравнению с β -AlCuFe, что связано со значительным снижением концентрации свободных электронов и указывает на полупроводниково-подобные свойства, характерные для совершенной ι- фазы. Этот эффект установлен ранее только для монозеренных ι-образцов [26]. Дополнительным подтверждением полупроводниковых свойств ι-фазы является зафиксированное понижение плотности состояний вблизи E_F в валентной полосе для оптимально отожженного сплава ι-Al-Cu-Fe по сравнению как с β -сплавом, так и с не отожженным двухфазным сплавом Al-Cu-Fe (β +1) (рис.23.б).

Результаты РФЭС-исследования полностью согласуются с оценками $N(E_F)$ по коэффициентам Зоммерфельда, полученным из измерений низкотемпературной теплоемкости для рассматриваемых сплавов (таблица 3).

Таблица 3. Коэффициенты Зоммерфельда $\gamma (2/3\pi^2 k_B^2 N(E_F))$ по измерениям низкотемпературной теплоемкости для квазикристаллообразующих и β -сплавов Al-Cu-Fe

Состав сплава	Фазовый состав	Состояние	γ , мДж/моль K^2
$Al_{63}Cu_{26}Fe_{11}$	(β+ι)	закаленный	1.19
$Al_{63}Cu_{26}Fe_{11}$	1-фаза	отожженный, 700°С	0.29
$Al_{50}Cu_{33}Fe_{17}$	β-твердый раствор	Закаленный	1.66
$Al_{50}Cu_{44}Fe_6$	β-твердый раствор	Закаленный	0.88

Таким образом, установлено два механизма структурно-фазового превращения $\iota \rightarrow \beta$ при изотермических отжигах закаленных квазикристаллообразующих сплавов Al-Cu-Fe (β + ι): непосредственное превращение из β -твердого раствора с областями ближнего порядка смешанного типа в икосаэдрическую фазу и превращение $\iota \rightarrow \beta$ через промежуточную впервые обнаруженную 3C-фазу; перестройка локальной атомной структуры в икосаэдрические кластеры рассматривается с участием ω -кластеров. Получена ι -фаза с высокой концентрацией двумерных дефектов (границ и ультратонких врастаний), предложен ростовый механизм их образования, он связывается с превращением $3C \rightarrow \iota$; продемонстрированы возможности РФЭС-метода для установления степени совершенства полизеренной ι -фазы Al-Cu-Fe по остовным электронным уровням.

В седьмой главе на оригинальных примерах рассмотрены возможности расчетного (рентгеновской фотоэлектронной интерпретации метода ΡΦД дифракции) для экспериментальных РФД-зависимостей и решения структурных задач для целого ряда поверхностных монокристальных систем. Сделан обзор литературных данных по исследованию превращений β↔ι на гранях квазикристаллов. С использованием sприближения расчетные РФД-зависимости предложены для идентификации упорядоченных на основе В-твердого раствора кристаллических фаз, формирование которых возможно на гранях квазикристаллов Al-Cu-Fe в ходе превращений $\beta \rightarrow \iota$.

Возможности РФД метода для структурного анализа определяются механизмом формирования зависимости интенсивности эмитированных фотоэлектронов от угла эмиссии $I(\vec{k})$, где \vec{k} -волновой вектор фотоэлектрона. Распределение $I(\vec{k})$ является результатом интерференции не рассеянной волны эмитированного фотоэлектрона ϕ_0 и волн фі, упруго рассеянных на атомах, окружающих эмиттер. Угловые функции амплитуды и фазовых множителей интерферирующих рассеянных волн включают всю информацию о структуре ближайшего окружения атома эмиттера. В случае, когда выбранный атомэмиттер характеризуется однотипным ближайшим окружением в поверхностном слое или несколькими типами, то структурные параметры ближайшего окружения определяет $I(\vec{k})$. варианты соответствуют монокристальным, конечную зависимость Эти эпитаксиально-ориентированным или адсорбированным поверхностным слоям, для которых РФД-анализ является наиболее информативным. Сочетание РФД и РФЭС (рентгеновской фотоэлектронной спектроскопии) реализуется на базе одного спектрометра. является мощным инструментом исследования поверхностных явлений в этой группе объектов и активно развивается в последние годы.

<u>РФД-анализ монокристальных и адсорбированных поверхностных слоев. s-</u> приближение. В зависимости от приближений в описании процессов эмиссии фотоэлектронов, процесса распространения и рассеяния фотоэлектронов на атомах существует ряд подходов в решении структурных задач методом РФД [27]. Описание процесса фотоэмиссии, не учитывающее тип конечного орбитального момента эмитированного фотоэлектрона. является очень хорошим приближением лля фотоэлектронов с кинетической энергией более 500-700 эВ (*s*-приближение). В этом случае угловые функции амплитуды и фазовых множителей рассеянных фотоэлектронов зависят, главным образом, от геометрии ближайшего окружения и не несут информации о типе рассеивающего атома. Для самого простого приближения, приближения "прямого рассеяния", распределение максимумов для $I(\vec{k})$ соответствует выходам наиболее плотноупакованных направлений и плоскостей структуры. Учет всех геометрических параметров моделированием однократного (SSC-SW) и многократного (MSC-SW) обеспечивается процессов рассеяния сферических волн фотоэлектронов на поверхностных кластерах с заданной структурой.

Это дает основание в рамках s-приближения решать структурные задачи любого для однокомпонентных монокристальных поверхностей и слоев, включая рода определение ориентации грани, типа и параметра решетки. Особенно подчеркнем возможности расчетного РФД метода для анализа дефектов поверхностной структуры, описываемых закономерным смещением атомов. Эти возможности ΡФЛ ΜЫ продемонстрировали, выполнив впервые РФД-исследование монокристальной грани (0001) Ті. С использованием "приближения прямого рассеяния" и SSC-SW моделирования для грани (0001)Ті было определено отношение параметров *с/а*, близкое к объемному значению 1.58, и отсутствие эффектов релаксации поверхностных слоев, превышающих 5% сжатие первых двух монослоев. Установлен факт блочной структуры, связанный с изменением последовательности упаковки и смещением плотноупакованных слоев А-В,

34

Рис.24. РФД-картины Ti2*p*-фотоэлектронов (*E*_{кин}=800 эВ) (а,в) и стереографическая проекция для грани Ti(0001), ГПУ-решетка (б): а – экспериментальная картина (диапазон 0°-70°), в – теоретическая картина (SSC-SW- приближение) для суперпозиции кластеров двух типов упаковок (*ABABABA*) и (*BABABAB*)

 $B \rightarrow A$ (рис.24).

Можно полагать, что использование s-приближения для многокомпонентных монокристальных поверхностей будет также информативным в случае решения задач по выявлению взаимной ориентации фаз и структурных трансформаций, связанных с изменением локальной геометрии и дефектностью в поверхностных структурах. Развивая расчетный РФД-метод в рамках s-приближения применительно к решению подобных задач для многокомпонентных систем, мы исследовали поверхностную структуру грани тройного селенида CuInSe₂ (112), сформировавшуюся после ионного модифицирования и изотермического отжига. Подобные задачи является актуальными для выяснения возможностей модифицирования структуры и свойств поверхности тройных селенидов, перспективных фотоэлектронных материалов.

B рамках исследования отработаны режимы формирования стабильной поверхности CuInSe₂ (112) с использованием нескольких циклов ионной бомбардировки и последующих отжигов монокристалла. Состав поверхности по оценкам РФЭС метода оказывается близким к формульному значению CuIn₃Se₅. Получены экспериментальные РФД угловые зависимости для фотоэлектронов In3d (*E*_{кин}=813 эВ), Cu2p (*E*_{кин}=555 эВ) и $Se(L_3M_{45}M_{45})$ (E_{KHH} =1300 эВ). В соответствии с указанным составом оже-электронов поверхности, выполнен расчетный РФД анализ в рамках s-приближения ряда возможных поверхностных структур: тройной селенид CuIn₃Se₅ (1), сочетание двойных селенидов In_2Se_3 и Cu₂Se (2), сочетание двойного In_2Se_3 и тройного селенида CuInSe₂ (3) с учетом взаимной преимущественной ориентации с гранью (112) CuInSe₂.

Как мы показали, определение поверхностной структуры и ее дефектности для указанных селенидов в рамках s-приближения наиболее эффективно с использованием подхода "рассеяния в прямом направлении", когда геометрия ближайшего окружения определяет максимумы рассеяния фотоэлектронов. Это связано с тем, что все структурные модификации указанных селенидов (α -In₂Se₃ (*R3m*, 160-trigonal), β -In₂Se₃ (*R3m*, 166trigonal), γ -In₂Se₃ (*P61*, 169-hexagonal), Cu₂Se (~*Fm3m*, 225-cubic), CuInSe₂ (*I* $\overline{4}$ 2d), CuIn₃Se₅ $(I\overline{4}2m)$) являются криталлографически-родственными фазами. В пределах малых тетрагональных дисторсий, за исключением сильно искаженной у-In₂Se₃, все фазы характеризуются гексагональной плотноупакованной структурой слоев металла (Cu, In) и селена. Последовательность слоев одного сорта атомов, как правило, соответствует кубической плотной упаковке (ABCABC...), либо содержит ее мотивы; слои атомов второго сорта занимают октаэдрические или тетраэдрические позиции. Ближайшие межатомные расстояния в гексагональных слоях для всех обсуждаемых фаз мало отличны. Можно показать, что в этих условиях геометрия ближайшего окружения полностью задается двумя параметрами - типом плотноупакованного слоя (A_N-, B_N-, или C_N- тип, N- сорт

РФД In 3d

Рис.25. Азимутальные угловые РФД In3*d* зависимости для грани (112)CuInSe₂: а – экспериментальные, б – расчетные для кластера сфалерита In(Cu)Se с дефектами упаковки. в - схема ближайшего окружения для атома-эмиттера In в сфалеритной структуре In(Cu)Se (полярность – атомы селена над атомами индия) с ориентацией кластера в направлении [0001], г- модели гексагональных (вюрцитных) дефектов упаковки в сфалеритной структуре

атомов) и межслоевым расстоянием.

Такое описание ближнего порядка определяет жесткую схему распределения основных максимумов. Азимутальные углы (и соответствующие направления) этих максимумов рассеяния соответствуют типу слоя: направления типа [10] в базисной

плоскости (0001) соответствуют рассеянию на ближайших атомах слоя "*A*", направления типа $[01\bar{1}0]$ - на атомах слоя "*B*", направления типа $[2\bar{1}\bar{1}0]$ - на атомах слоя "*C*". Полярные углы максимумов рассеяния зависят от межслоевого расстояния. Анализ в приближении "прямого рассеяния" в рамках этого описания геометрии ближнего порядка позволил однозначно исключить одновременное присутствие на поверхности CuInSe₂ кристаллитов бинарных селенидов α -In₂Se₃, β -In₂Se₃, γ -In₂Se₃ и Cu₂Se и предпочесть структуры тройных селенидов. *SSC-SW* расчет дифракции Cu2*p*-, In3*d*-фотоэлектронов и ожеэлектронов Se($L_3M_{45}M_{45}$) на кластерах бинарных селенидов полностью подтверждает этот вывод.

Моделирование тройных упорядоченных селенилов учетом с малых тетрагональных дисторсий и ограничений s-приближения в определении типа атомов выполнено на основе базовой кубической, плотнейшей упаковки слоев (сфалеритной) - $C_{In}C_{Se}A_{In}A_{Se}B_{In}B_{Se}C_{In}$. Анализ в приближении прямого рассеяния и расчетные SSC-картины для двух типов кластеров с совершенной структурой сфалерита In(Cu)Se обнаруживают принципиальное сходство с экспериментом. Соответствие между экспериментальными и SSC-азимутальными зависимостями улучшается, если в кластеры вводятся гексагональные дефекты упаковки, т.е. мотивы вюрцитной структуры – $C_{\text{Se}}C_{\text{In}}A_{\text{Se}}A_{\text{In}}C_{\text{Se}}C_{\text{In}}$ (~10-20%) (рис.25). Этот же эффект достигается для суперпозиции кластеров сфалерита и у-In₂Se₃ со структурой слабо искаженного вюрцита.

Вывод об образовании гексагональных дефектов упаковки в фазах на основе сфалерита согласуется с результатами исследований деформационного поведения этих фаз, выполненных первопринципными методами Медведевой Н.И. на структурных моделях, предложенных диссертантом. Полученные оценки энергии образования дефектов упаковки $E_{SF} = 0.09$ and 0.11 J/m² для структурных моделей $ABC/B_0C_0A/CA_0B_0/...$ и $AB/A_0B_0/AB/...$ указывают на очень высокую вероятность образования этих дефектов в структурах на основе сфалерита.

Выше для однокомпонентных и многокомпонентных монокристальных объектов продемонстрированы возможности РФД-метода в рамках s-приближения для решения структурных задач, связанных с чувствительностью к геометрии ближнего окружения поверхностных кластеров. Ограничения этого подхода в определении типа атомов, как было показано в наших работах, могут быть преодолены для случая вакансионноупорядоченных фаз, когда реализуется предельный вариант в различии амплитуд рассеяния Примером этому служат результаты наших РФД-исследований фотоэлектронов. структурных характеристик адсорбционных слоев N/(0001)Ti, O/(0001)Ti, C(O)/(0001)Ti, N(O)/(0001)Ті, проведенных в рамках изучения адсорбционных явлений на металлических монокристаллах и изложенные в книге "Химия поверхности раздела титан-газ" (Кузнецов М.В., Шалаева Е.В., Медведева Н.И., Ивановский А.Л.). Стабильные адсорбированные слои были сформированы в атмосфере соответствующих газов (N2, O2, CO, NO) непосредственно в спектрометре. Для структурного исследования адсорбционных слоев были получены РФД-угловые зависимости для фотоэлектронов всех состояний хемосорбированых атомов N1s ($E_{\kappa \mu H}$ =857 эВ), O1s ($E_{\kappa \mu H}$ =722 эВ), C1s ($E_{\kappa \mu H}$ =972эВ).

В результате расчетного РФД-анализа адсорбированных слоев N/Ti(0001), O/Ti(0001), C(O)/Ti(0001), выполненного в s-приближения и SSC-SW моделирования, удалось определить два типа локализации атомов адсорбатов – надповерхностную (тетраэдрическую) и подповерхностную (октаэдрическую). Два установленных типа локализации задают последовательность упаковки слоев, характерную для структур B1(NaCl)-карбида, переходных IV-группы, нитрида, оксида металлов $B_{N(C,O)}A_{Ti}C_{N(C,O)}B_{Ti}A_{Ti}B_{Ti}A_{Ti}B_{Ti}$. Типы предпочтительной локализации в дальнейшем были подтверждены квантово-химическими расчетами, проведенными Медведевой Н.И. Моделирование РФД-зависимостей для подповерхностных состояний адсорбата позволило определить тип предпочтительных упорядоченных надповерхностных атомно-вакансионных

Рис.26. Полярные РФД-зависимости O_I1*s* в системе O/Ti(0001) (L ≤ 2 Л), плоскость (1 $\overline{2}$ 10). *1* – эксперимент, 2-4 – SSC-SW расчеты. *I* - слой Ti(0001), эмиттер O_I в первом подслое *ГПУ* титана в октапозиции; *II* – два слоя Ti(0001), подповерхностная структура *p*-(2x2)-O_I⁽¹⁾, эмиттер – O_I⁽²⁾ в октамеждоузлиях второго подслоя, *III* - слой Ti(0001), надповерхностная структура *p*-(1x1)-O_{II} в тетрапозициях, эмиттер – O_I(1)

структур атомов адсорбата: для системы N/Ti(0001) - N_{II}- $\sqrt{3} \times \sqrt{3}$ -30°, системы O/Ti(0001) - O_{II} -*p*-(1x1) (рис.26); системы C(O)/Ti(0001) - C_{II}(O_{II})-*p*(1x1).

<u>Структурные превращения і↔β-твердый раствор на гранях монозеренных</u> квазикристалллов Al-Pd-Mn, Al-Cu-Fe. Исследования РФД-методом. Структурные превращения $\iota \rightarrow \beta$, $\beta \rightarrow \iota$ на гранях монозеренных квазикристаллов Al-Pd-Mn, Al-Cu-Fe были обнаружены в ходе изучения стадий формирования "чистой", упорядоченной структуры поверхности квазикристаллов при ионной бомбардировке и последующем отжиге [3,4]. По РФЭС данным превращение $\iota \rightarrow \beta$ всегда сопровождается обеднением поверхности по алюминию и обогащением по Pd(Cu). Методом РФД с использованием sприближения и подхода "рассеяния в прямом направлении" для трансформации β→ι на гранях с осями симметрии A2 и A5 Al-Pd-Mn в этих работах были установлены конечная (1) и исходная (В) структура поверхности, испытывающей превращения, определены взаимные ориентации фаз, в целом, соответствующие основному ориентационному соотношению A5 || [110]_в, A2 || [111]_в (**1**). Вместе с тем, в ходе $\beta \rightarrow \iota$ трансформации на грани 1-Al-Cu-Fe возможно формирование промежуточных упорядоченных на основе βтвердого раствора фаз, типа η-Al(Cu,Fe) или модифицированной η`-Al(Cu,Fe) (3C-фаза), обнаруженных нами при изучении фазовых превращений В объемных квазикристаллообразующих и β-сплавах Al-Cu-Fe (см.гл.5,6).

В этом разделе мы рассмотрели возможности идентификации этих фаз в рамках *s*-приближения РФД-методом на примере сравнительного анализа расчетных РФД зависимостей, полученных в *s*-приближении для структур η₂-Al(Cu,Fe) фазы (базовая структура фаз η-группы) и β-твердого раствора. η₂-AlCu(Fe) фаза является атомноупорядоченной, и в рамках *s*-приближения следовало бы ожидать существенных ограничений в ее идентификации. Однако, как показано нами (см. гл.5), формирование η₂-

Рис.27. Азимутальные РФД зависимости фотоэмиссии Nb3*d*_{5/2} (*E*_{кин}=1050 эВ) для грани Nb(110): экспериментальные (точечные кривые) и расчетные, SSC-моделирование однократного рассеяния на семислойном ОЦК-кластере с ориентацией [110] (сплошные кривые). Диапазон полярных углов 32.5°-75°. Указаны выходы наиболее плотноупакованных направлений ОЦК-решетки

Рис.28. Структура слоя типа $(010)_{\eta 2}$ рассеивающего кластера η_2 -АlСи фазы (а). 1- неэквивалентные атомы-эмиттеры меди, 2- атомы меди и алюминия в первом рассеивающем слое, 3 – позиции атомов в идеальной β-решетке (а). Азимутальные угловые зависимости для кластера с β-решеткой (ориентация по $(110)_{\beta}$) (б) и для кластера с η_2 -решеткой (в). Полярные углы: 1- 50°, 2- 52.5°, 3- 55°, 4 – 57.5°, 5-60°. Расчет в рамках *SSC-SW* модели, *s*- приближение, двухслойный кластер

фазы сопровождается значительными закономерными атомными ω -подобными смещениями из позиций β -решетки, и можно полагать, что *s*-приближение будет информативно. Ориентация β -фазы выбрана нами в направлении [110], что соответствует направлению [010]_{η2}. В эксперименте слои поверхностной β -фазы с ориентацией в направлении типа [110] образуются на гранях квазикристаллов Al-Cu-Fe с осями симметрии пятого и второго порядка [3,4].

 β (CsCl)-твердый раствор в рамках *s*-приближения был промоделирован ОЦКрешеткой, без учета упорядочения. Ранее в нашей работе, выполненной на монокристальной поверхности (110) ОЦК-Nb, было продемонстрировано, что *SSC-SW* моделирование в рамках *s*-приближения очень хорошо аппроксимирует позиции всех дифракционных максимумов экспериментальных РФД-зависимостей ОЦК-решетки для значительного диапазона полярных углов от 32.5° до 75° (рис.27). В качестве эмиттеров для η-решетки выбраны атомы в позициях меди, при этом учтены все структурно неэквивалентные позиции (рис.28.а)

SSC-SW моделирование (s-приближение) уже на двухслойных кластерах показало, что наличие атомных смещений из позиций идеальной β -решетки, характерных для η_2 фазы, приводит к существенному смещению максимумов рассеяния (до 10°) и дополнительному пику в направлениях, близких к направлениям типа [111] по сравнению с РФД-зависимостями для идеальной β (ОЦК)-решетки (рис.28.б). Эффект атомных смещений для второй координационной сферы эмиттеров в η_2 -структуре можно проследить на расчетных РФД - зависимостях от трехслойных кластеров. Очевидно, что для упорядоченных фаз типа ϵ -Al₂(Cu,Fe)₃ и ζ -Al₃(Cu,Fe)₄, для которых характерны более значительные по величине ω -подобные атомные смещения (в направлении типа [111]), отличия их РФД угловых зависимостей от соответствующих зависимостей для β -твердого раствора будут еще значительнее.

Таким образом, наши модельные расчеты демонстрируют возможности РФД-метода в рамках s-приближения (фотоэлектроны с $E_{\kappa u H}$ >500 эВ) для идентификации атомноупорядоченных на основе β -твердого раствора фаз (типа η -Al(Cu,Fe), ζ -Al₃(Cu,Fe)₄, ϵ -Al₂(Cu,Fe)₃, образование которых возможно в поверхностных слоях на гранях монозеренных квазикристаллов Al-Cu-Fe после ионной бомбардировки и последующих изотермических отжигов

В настоящей работе РФД метод в рамках *s*-приближения и однократного рассеяния фотоэлектронов (*SSC-SW* моделирование) развит применительно к различным типам объектов: граням чистых монокристаллов Ti, Nb, упорядоченным адсорбированным монослоям N/(0001)Ti, O/(0001)Ti, C(O)/(0001)Ti, N(O)/(0001)Ti, ионно-модифицированной монокристаллической грани CuInSe₂, упорядоченным на основе β-твердого раствора фазам системы Al-Cu-Fe. Интерпретированы экспериментальные РФД-картины и решены следующие структурные задачи: определены локализация адсорбированных монослоев, тип и параметры решетки, взаимная ориентация поверхностных структур, их блочность и дефектность.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Впервые с применением просвечивающей электронной микроскопии и электронно-дифракционных методик анализа диффузного рассеяния установлены структурное состояние и структурно-фазовые превращения в ряду β -твердых растворов в двухфазных квазикристаллообразующих (Al₆₃Cu₂₆Fe₁₁, Al₆₁Cu₂₅Fe₁₂) сплавах (β + ι) и в β -сплавах (Al₅₀Cu₃₃Fe₁₇, Al₅₀Cu₃₇Fe₁₂, Al₅₀Fe₄₄Cu₆, Al₄₇Fe₅₀Cu₃).

а) В области составов 47-53ат.% Al, 49-43ат.% Cu с содержанием Fe менее 5ат.%, с электронной концентрацией e/a более ~ 1.7, близкой к e/a t-фазы, состояние β -твердого раствора является гетерогенным. Обнаружено однотипное диффузное рассеяние (д.р), представленное двумя связанными типами сфероидов (большие искаженные и малые сфероиды), которые вписаны в октаэдры с гранями типа (111)*, проходящими соответственно через структурные и сверхструктурные узлы ОЦК-решетки. С д.р. связаны диффузные максимумы в несоизмеримых позициях типа ~ $1/3 < 111 > *_{\beta}$, ~ $2/3 < 111 > *_{\beta}$. В рамках кластерного метода и подхода волн атомных смещений состояние β -твердого раствора характеризуется наличием областей ближнего порядка типа замещения с. ω подобными смещениями атомов.

б) Ближний порядок рассматривается как предпереходный к наблюдаемым фазовым превращениям с выделением ряда упорядоченных фаз η_1 -Al(Cu,Fe), 3C, ϕ -Al₁₀Cu₁₀Fe. Предложенная модель ближнего порядка коррелирует со структурой указанных фаз; для них характерно наличие общей особенности - ω -подобных атомных смещений, при этом для составов с избыточным содержанием алюминия компонента замещения характеризуется упорядочением вакансионных и 3d-металл слоев (τ_3 -тип), для составов с избыточным содержанием алюминиевых и смешанных слоев (η - и ϕ - тип).

в) Измерения физических свойств (высокотемпературной магнитной восприимчивости, низкотемпературной теплоемкости и электросопротивления) подтвердили выделение φ- и η- фаз.

2. С использованием первопринципных методов (пакет VASP) установлен факт стабилизации упорядоченных на основе β -твердого раствора фаз τ_3 -Al₃Cu₃ и η_2 -AlCu при частичном замещении атомами железа структурных позиций меди. Показано, что энергетически невыгодно замещение Fe \rightarrow Al (типа антиузельного дефекта), которое сопровождается ростом локальных магнитных моментов на атомах Fe. По результатам расчетов прогнозируется стабилизация ближнего порядка, связанного с выделением указанных фаз в тройных β -сплавах Al-Cu-Fe. Это согласуется с экспериметнально наблюдаемыми данными по структуре этих сплавов.

3. Впервые проведено систематическое расчетное и экспериментальное электроннодифракционное исследование ориентационных соотношений β-твердого раствора и i-фазы в квазикристаллообразующих закаленных и отожженных (T_{отж}=350C, 450C) сплавах Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₅Fe₁₂.

а) С помощью метода стереографических проекций обнаружено, помимо принятого в литературе ориентационного соотношения β - и 1- фаз - [110]_{β} || A5₁, [$\bar{1}1\bar{1}$]_{β} || A2₁ (1), три дополнительных ориентационных соотношения: [110]_{β} || A5₁, [$\bar{1}10$]_{β} || A2₁ (1*), [11 $\bar{1}$]_{β} || A3₁, [$\bar{1}10$]_{β} || A2₁ (3); [111]_{β} || A2₁, [$\bar{1}10$]_{β} || A2₁ (4), которые близки к основному соотношению (1).

б) Предложена электронно-дифракционная методика определения типа ориентационных соотношений и установлено, что в быстрозакаленных сплавах реализуется ориентационное соотношение $[111]_{\beta} || A2_{\iota}$, $[\overline{1}10]_{\beta} || A2_{\iota}$ (4), в отожженных образцах - соотношения $[110]_{\beta} || A5_{\iota}$, $[\overline{1}10]_{\beta} || A2_{\iota}$ (1*) или $[110]_{\beta} || A5_{\iota}$, $[\overline{1}1\overline{1}]_{\beta} || A2_{\iota}$ (1).

В рамках критерия точечной симметрии Маккаи и геометрии совпадения плотноупакованных плоскостей β -решетки и квазиплоскостей ι -фазы сделано заключение, что экспериментальная реализация низкосимметричных ориентационных соотношений (1) или (1*) в отожженных сплавах $Al_{61}Cu_{26}Fe_{13}$, $Al_{63}Cu_{25}Fe_{12}$ является результатом понижения

упругой энергии системы и вклада поверхностной энергии за счет лучшего структурного соответствия квазиплоскости A5 и плоскости (110)_в.

4. Установлены структурно-фазовые трансформации $\beta \rightarrow \iota$ при изотермических отжигах квазикристаллообразующих сплавах Al₆₁Cu₂₆Fe₁₃, Al₆₃Cu₂₆Fe₁₁ (β + ι).

а) Трансформация $\beta \rightarrow \iota$ в зависимости от состава происходит либо непосредственно из β -твердого раствора с участием областей ближнего порядка ω -типа с последующим известным обратимым превращением $\iota \leftrightarrow R$ -аппроксимант (сплав $Al_{63}Cu_{25}Fe_{12}$), либо через кристаллическую 3C-фазу (сплав $Al_{61}Cu_{26}Fe_{13}$). Вывод об участии областей ближнего порядка с ω -подобными смещениями в превращении $\beta \rightarrow \iota$ согласуется с более поздней кристаллогеометрической моделью формирования взаимно-пересекающихся икосаэдров из кластеров ω -фазы (модель Ван Янцьзин).

б) Новая 3С-фаза обнаружена при низкотемпературных отжигах (450°) в области составов $Al_{50-x}Cu_{45+x}Fe_5$ (-5 < x < 3) в результате гомогенного выделения в β -твердом растворе. 3С фаза имеет утроенный параметр элементарной ячейки $3a_\beta$, принадлежит к группе η -фаз и характеризуется электронной концентрацией е/а ~ 1.75-1.95, близкой к электронной концентрации икосаэдрической фазы.

в) Совершенная икосаэдрическая структура формируется из 3С фазы в рамках следующих ориентационных соотношений: $[10T]_{3c} || A5_1, [T1T]_{3c} || A2_1, (1),$ или $[10T]_{3c} || A5_1, [101]_{3c} || A2_1, (1^*)$ через стадию высокодефектной 1-структуры с врастаниями 2D-квазипериодической структуры Трансформация $3C \rightarrow 1$ может быть охарактеризована механизмом превращения кристалл \rightarrow квазикристалл с промежуточной стадией квазикристалла, насыщенного двумерными дефектами ростового происхождения.

5. Методом рентгеновской фотоэлектронной спектроскопии (РФЭС) установлено, что для полизеренного отожженного квазикристаллообразующего сплава $Al_{63}Cu_{26}Fe_{11}$ проявляется характерное для совершенной икосаэдрической структуры сужение и уменьшение асимметрии остовного уровня Fe2p, а также снижение плотности электронных состояний вблизи уровня Ферми (по сравнению со сплавом β (CsCl)- $Al_{50}Cu_{33}Fe_{17}$). Эти результаты полностью согласуются с оценками $N(E_F)$, полученными из измерений низкотемпературной теплоемкости для квазикристаллообразующего сплава $Al_{63}Cu_{26}Fe_{11}$ и β -сплавов $Al_{50}Cu_{33}Fe_{17}$, $Al_{50}Cu_{44}Fe_{6}$. Проведенное исследование впервые продемонстрировало возможности метода РФЭС для выявления высокорезистивных аномалий полизеренных икосаэдрических сплавов *i*-Al-Cu-Fe по остовным электронным спектрам.

6. РФД метод в рамках s-приближения и однократного рассеяния фотоэлектронов (SSC-SW моделирование) развит применительно к различным типам объектов.

а) Интерпретированы РФД-картины чистых поверхностей монокристаллов Ti(0001), Nb(110), упорядоченных адсорбированных монослоев Ti-N, Ti-O, Ti-C(O), Ti-N(O) и ионно-модифицированной монокристаллической грани (112)CuInSe₂; определены следующие структурные характеристики поверхности: локализация адсорбированных монослоев, тип и параметры решетки поверхностной структуры, блочность и дефектность.

б) С использованием s-приближения и однократного рассеяния фотоэлектронов (SSC-SW моделирование) проведены модельные расчеты и продемонстрированы возможности РФД метода для идентификации атомно-упорядоченных на основе β-твердого раствора фаз (типа η-Al(Cu,Fe), ζ-Al₃(Cu,Fe)₄, ε-Al₂(Cu,Fe)₃). Образование этих фаз возможно в поверхностных слоях на гранях монозеренных квазикристаллов Al-Cu-Fe после ионной бомбардировки и последующих изотермических отжигов.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Physical properties of quasicrystals / Ed. Stadnik Z. M. - Berlin Heidelberg New York.: Springer-Verlag, 1999. - 440 P.

2. Steurer W. Structural phase transitions from and to the quasicrystalline state // Acta Crystallogr. A. - 2005. - Vol.61. - P.28-38.

3. Naumovic D. Structure and electronic structure of quasicrystal and approximant surfaces: a photoemission study // Surf. Scie. Rep. -2004. - V.75. - P. 205-225.

4. Shen Z. et al. Crystalline surface structures induced by ion sputtering of Al-rich icosahedral quasicrystals // Phys. Rev. B. – 1998. – Vol.58. – P.9961-9971.

5. Calvayrac Y. et.al. Icosahedral AlCuFe alloys: towards ideal quasicrystals // J. Phys. France. – 1990. – Vol.51. – P.417-431.

6. Fadout F. The Al-Cu-Fe phase diagram: aluminium-rich corner and icosahedral region // Ann. Chim. France. – 1993. – Vol.18. – P.445-456.

7. Tanabe T., Kameoka S., Tsai A.P. A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol // Catalysis Today. – 2006. – Vol.111. – P.153-157.

8. Van Tandeloo G., Amelinckx S. The origin of diffuse intensity in electron diffraction patterns // Phase Trans. – 1998. – V.67. – P. 101-135.

9. Welberry T.R., Butler B.D. Diffuse X-ray scattering from disordered crystals // Chem. Rev. -1995. – V.95. – P.2369-2403.

10. Hume-Rothery phases with constant e/a value and their related properties in Al-Cu-Fe-(Cr) quasicrystalline systems / Dong C., Perrot A., Dubois J.M., Belin E. // Materials Scie. Forum – 1994. – Vol.150-151. – P.403-416.

11. Prekul A.F., Kuz'min N.Yu., Shchegolikhina N.I. Electronic structure of icosahedral quasicrystals: role of defects // J. Alloys & Comp. – 2002. – Vol.342. – P.405-409.

12. Сасовская И.И., Сударева С.В., Маевскй В.М., Корабель В.П. Структура сплавов Си-Zn в предпереходном состоянии и особенности их оптических свойств в ИК области спектра // ФММ. – 1988. – Т.65. – С.94-103.

13. Wang Z., Yang X., Wang R. Ar⁺-ion irradiation induced phase transformation in an $Al_{62}Cu_{25.5}Fe_{12.5}$ icosahedral quasicrystal // J. Phys.: Condens. Matter. – 1993. – Vol.5. – P.7569-7576.

14. Belli C., Ishimasa T., Nissen H.U. Orientation relation between icosahedral and crystalline phjase in Al-Mn alloys // Phil. Mag. B. – 1988. – V.57. – P.599-608.

15. Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. - М.: Наука, 1974. - 384 с.

16. Лясоцкий И.В., Дьяконова Н.Б, Тяпкин Ю.Д. К вопросу о кристаллической структуре твердых растворов переходных металлов с оцк решеткой // Докл. АН СССР. – 1977. – Т. 237. – С. 577-580.

17. Zhang L., Schneider J., Luck R. Phase transformations and phase stability of AlCuFe alloys with low Fe content // Intermetallics. – 2005. – Vol.13. – P.1195-1206.

18. Kresse G., Furthmuller J. Efficient iteractive schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. – 1996. – V. 54. – P.11169-11186.

19. Perdew J.P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation // Phys. Rev. B. – 1992. – V.46. – P.6671- 6687.

20. Apinaniz E., Plazaola F., Garitaonandia J.S. Electronic structure calculations of Fe-rich ordered and disordered Fe-Al alloys // Eur. Phys. J. B. - 2003. – Vol.31. – P.167-177.

21. Zhang Z., Li N.C. Orientashion relationship between the icosahedral quasicrystalline and the B2-based crystalline phases in $Al_{65}Cu_{20}Fe_{15}$ alloys // Scrip. Metall. – 1990. – Vol.24. – P.1329-1334.

22. Duneau M., Qouey C. Displacive transformations and quasicrystalline symmetries // J. Phys. France – 1990. – Vol.51. – P.5-19.

23. Янцзинь В. Структура ω-фазы как промежуточная конфигурация при полиморфных превращениях в сплавах на основе титана и железа // Автореферат диссертации на соискание степени к.ф.-м.н. Московский Технический Университет. им. Н.Е Баумана, 2005.

24. Kraposhin V.S., Talis A.L., Lam H.T., Dubois J.M. Model for the transformation of an icosahedral phase into a B2 crustalline phase // J.Phys.: Condens. Matter. – 2008. – V.20.- art. 235215 (1-8).

25. Кацнельсон М.И, Трефилов А.В. Локальные искажения, диэлектрические области и природа высокорезистивного состояния в метастабильных сплавах на основе титана и циркония // Письма ЖЭТФ. - 1994. – Т.59. – С.198-201.

26. Fournee V. et al. Electronic structure of quasicrystalline surfaces: effects of surface preparation and bulk structure // Phys. Rev. B. – 2000. – V.62. – P.14049-14060.

27. Fadley C.S. Diffraction and holography with photoelectrons and Auger electrons: some new directions // Surf. Sci. Rep. – 1993. – V.19. – P.231-264.

СПИСОК ОСНОВНЫХ РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Shalaeva E.V., Kuznetsov M.V., Baryshev R.S., Mitrofanov B.V. Synthesis and structure of nonstoichiometric δ-NbN_{1+y} films // J. De Phys.IV.Suppl. 1991. V.1. P.209-216.
- 2. Shalaeva E.V., Baryshev R.S., Kuznetsov M.V., Mitrofanov B.V. Structure of epitaxial δ-NbN films deposited by cathode reactive sputtering // Thin Solid Film. 1995. V.261. P.64-69.
- Shalaeva E.V., Mitrofanov E.V., Shveikin G.P. Structure and stability of nonstoichiometric cubic phase δ-NbN_{1.2}(C,O) // phys. stat. sol. (a). -1996. - V.154. - P.505-515.
- 4. Shalaeva E.V. Diffuse scattering in nonstoichiometric cubic phase δ-NbN _{1.2}(O,C) // XVII European Crystallogrphic Meeting, Lisboa, 24-28 August 1997. Abstracts. P.71.
- 5. Келлерман Д.Г., Шалаева Е.В. Катионное упорядочение в кубических твердых растворах в LiFe_xNi_{1-x}O₂ // VIII Всероссийское совещание "Высокотемпературная химия силикатов и оксидов". Тезисы докладов. С-Петербург, 19-21 ноября 2002.- С.253
- 6. Келлерман Д.Г., Шалаева Е.В., Гусев А.И. Образование кластеров в LiNi_{0.4}Fe_{0.6}O₂ // Физика твердого тела 2004. Т.46. С.1633-1639.
- Прекул А.Ф., Казанцев В.А., Шалаева Е.В., Щеголихина Н.И. Увеличение объема и усиление признаков диэлектрического поведения при высокотемператур-ном отжиге закаленных квази-кристаллообразующих сплавов // Письма в ЖЭТФ -1998. – Т.67. – С.190-196.
- Shalaeva E.V. Structural state of CsCl-solid solution in quenched quasicrystal-forming alloys of AlCuFe // International conference on Quasicrystals, Stuttgart, 20-24 September, 1999. Abstracts. – P.37.
- 9. Shalaeva E.V., Prekul A.F. Structural state of β -solid solution of quenched quasicrystal-forming alloys of Al₆₁Cu₂₆Fe₁₃ // phys.stat.sol. (a). 2000. V.180. P.411-425.
- 10. Shalaeva E.V. The role of ω -like displacements in the β -solid solution (CsCl) $\rightarrow \iota$ -phase transformation // Quasicrystals 2001. Abstracts. Sendai, Japan, 24-28 September 2001. P.40.
- 11. Shalaeva E.V. On mutual transformation of icosahedral phase and β -solid solution with participation of ordered ω -like displacements in quenched alloys of Al₆₁Cu₂₆Fe₁₃ // J. Alloys and Comp. 2002. V.342. P.134-138.
- 12. Шалаева Е.В., Прекул А.Ф. Ориентационные соотношения икосаэдрической фазы и βтвердого раствора в квазикристаллообразующих закаленных сплавах Al₆₁Cu₂₆Fe₁₃ // Физика металлов и металловедение – 2006. - Т.101. – С.158-170.
- Шалаева Е.В., Прекул А.Ф. Структурное состояние квазикристаллообразующих сплавов Al₆₁Cu₂₆Fe₁₃ и возможный механизм превращения β→ икосаэдрическая фаза // Материаловедение – 2006. - № 1. – С.34-40.
- 14. Шалаева Е.В., Прекул А.Ф., Панкратов А.А. Фазовые превращения и дефекты отожженных квазикристаллообразующих сплавах Al₆₁Cu₂₆Fe₁₃, полученных быстрой закалкой // Пятый семинар СО РАН-УрО РАН. Термодинамика и материаловедение. Тезисы докладов. Новосибирск, 26-28 сентября 2005, с.153.
- 15. Шалаева Е.В., Медведева Н.И., Шеин И.Р. Первопринципные расчеты стабильности и структурных дефектов фаз В2-Си_хFe_{1-x}A1 // ФТТ. − 2007. − Т.49. − С.1195-1201.
- Шалаева Е.В., Медведева Н.И. Первопринципные расчеты стабильности и эффектов замещения в упорядоченных на основе CsCl-твердого раствора фазах τ-Al₃(Cu,Fe)₂, η-Al(Cu,Fe) // Всероссийская конференция "Химия твердого тела и функциональные материалы-2008". Тезисы. Екатеринбург, 21-24 октября 2008. – С.397.

- 17. Shalaeva E.V. et al. Phase transformations in quasicrystal-forming quenched alloys Al₆₁Cu₂₆Fe₁₃ subjected to annealing // Aperiodic'06. Abstracts. Zao Miyagi, Japan, 17-22 September 2006. P.64.
- 18. Shalaeva E.V, Prekul A.F. Structural transformations in quasicrystal-forming quenched alloys of Al₆₁Cu₂₆Fe₁₃ subjected to isothermal annealing // Phil. Mag. -2007. V.87. P.2913-2919.
- Шалаева Е.В., Преукл А.Ф., Назарова С.З. Структура и низкотемпературные фазовые превращения β-твердого раствора в сплавах квазикристаллообразующей системы Al-Cu-Fe // Всероссийская конференция "Химия твердого тела и функциональные материалы-2008". Тезисы. Екатеринбург, 21-24 октября 2008. – С.396.
- 20. Прекул А.Ф., Щеголихина Н.И., Шалаева Е.В. Особенности температурного поведения магнитной восприимчивости и парамагнетизм электронов проводимости икосаэдрического квазикристалла Al₆₃Cu₂₅Fe₁₂ // Физика металлов и металловедение. 2008. Т.106. №2. С.157-163.
- Кузнецов М.В., Шалаева Е.В., Прекул А.Ф., Щеголихина Н.И. Исследование методом рентгеновской фотоэлектронной спектроскопии квазикристаллического Al _{62.5}Cu₂₅Fe_{12.5} и кристаллического β-Al₅₀Cu₃₃Fe₁₇ сплавов // Известия РАН. Серия физическая. - 2007. - Т.71. - №5. - С. 552-555.
- 22. Kuznetsov M.V., Shalaeva E.V., Borisov B.V. et al. Metastable TiSi_xN_yO_z films of B1-type structure prepared by the arc process / // Thin Solid Films. 1996. V.279. P.75-81.
- 23. Кузнецов М.В., Шалаева Е.В., Борисов С.В., Медведева Н.И., Митрофанов Б.В., Ивановский А.Л., Швейкин Г.П. Метастабильные кубические твердые растворы TiSiN(C,O): синтез, экспериментальное и теоретическое исследование // Журнал Неорганической Химии. 1998. Т.43. С.217-228.
- 24. Shalaeva E.V. et al. Metastable phase diagram Ti-Si-N(O) films ($C_{Si} < 30$ at.%) // Thin Solid Films. 1999. –V.339. P.129-136.
- E.V.Shalaeva, M.V.Kuznetsov, S.V.Borisov, N.I.Medvedeva Metastable solid solution of Ti-Si-N-O: synthesis, structure and stability // Abstract's book of NATO Advanced Study Institute, "Materials Science of Carbides, Nitrides and Borides", St.Petersburg, August 12-22, 1998. – P1-9.
- Д.П.Фриккель, .В.Кузнецов, Е.В.Шалаева Реконструктивная хемосорбция кислорода на поверхности Ti(0001): РФЭС и РФД исследование// Физика металлов и металловедение – 1998. –Т.85. – Р.452-462.
- 27. D.P.Frickel, M.V.Kuznetsov, E.V.Shalaeva XPS and XPD analysis of nutrogen adsorption on Ti(0001) surface // Surface Review and Letters. 1997. V.4. –P.1309-1314.
- M.V.Kuznetsov, D.P.Frickel, E.V.Shalaeva Adsorption of carbon monooxide on Ti(0001) // J.Electron Spectros.Relat.Phenom. – 1998. – V.96. – P. 29-36.
- 29. Кузнецов М.В., Шалаева Е.В., Медведева Н.И., Ивановский А.Л. Химия поверхности раздела титан-газ. Екатеринбург.: УрО РАН, 1999. 380 с.
- Шалаева Е.В., Кузнецов М.В. Рентгеновская фотоэлектронная дифракция. Возможности структурного анализа поверхности // Журнал Структурной Химии. – 2003. – Т.44. – С.518-552.
- 31. Шалаева Е.В., Кузнецов М.В. Рентгеновская фотоэлектронная дифракция на поверхности Nb(110) // Физика металлов и металловедение. 2003. Т.96. С.79-86.
- 32. Kuznetsov M.V., Shalaeva E.V., Yakyshev M.V, Tomlinson R.D. Evalution of CuInSe₂ (112) surface due to annealing: XPS study // Surf. Sci. Letters. -2003. V.530. P.297-301.
- 33. Kuznetsov M.V., Shalaeva E.V., Panasko A.G., Yakushev M.V. XPS and XPD insestigation of (112) CuInSe₂ and Cu(InGa)Se₂ surfaces // Thin Solid Films. 2004. V.451-452. P.137-140.
- Medvedeva N.I., Shalaeva E.V., Kuznetsov M.V., Yakushev M.V. First-principles study of deformation behavior and structural defects in CuInSe₂ and Cu(In,Ga)Se₂ // Phys. Rev. B. - 2006. -V. 73. - art. 035207 (1-6).