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Aluminum-ion battery technology: a rising star or a devastating fall?
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As the share of renewable energy in the overall global energy
consumption increases (e.g., the readers are kindly directed to
the European Union goals [1–3]), issues of energy storage,
alongside efficient electric transmission and distribution (using
smart grid management [4]) are becoming the primary con-
cerns. The electricity generated using renewable technologies
(e.g., solar and wind energy sources) is being harvested upon
catching the proper and available weather and daytime. Often,
the moment of power generation does not meet the time this
energy is needed for consumption [5]. Seeking cost-effective
energy storage technologies is one of the main hindrances to
the full implementation of renewable energy technologies as
primary sources of energy. The energy storage technologies
utilized nowadays can be divided into different categories, in-
cluding chemical (such as hydrogen), electrochemical (various
types of batteries), electrical (supercapacitors), mechanical (in-
cluding compressed air and pumped hydro energy storage), and
thermal (hot water storage and molten salt technologies) solu-
tions [5]. Even though energy storage can be achieved in a
variety of ways and methods, usually when considering
small-scale energy storage systems for a short-term application,
battery storage systems have the advantage of being easily
distributed and simply modulated.

Additional to renewable energy storage, the increasing in-
terest and demand for light-duty electric vehicles led to an
enormous global research effort after new battery chemistries
[6]. On the one hand, the well-known already commercialized
lithium (Li)-ion battery (LiB) is increasing its global market
share while demonstrating higher-energy densities with a sig-
nificant cost drop to its lowest price per kWh every year [7].
However, when considering stationary energy storage facilities

and applications, the amount of energy that can be stored is
directly proportional to the amount of active material.
Therefore, for this kind of use, the cost per kWh is the deter-
mining factor, since massive quantities of raw material will be
utilized [8]. Additionally, one should be aware that some sig-
nificant challenges may result from the need to use aprotic
organic solvents as constituents of LIB’s electrolyte. Those
electrolytes lead to several obstacles, including safety-related
issues, capacity fading during cycling, and even issues in the
production process due to the filling and wetting process re-
quired [9].Moreover, the growing concern of the public and the
companies in the matter of supply risk of mineral resources led
the research community to investigate abundant materials as
possible negative electrodes that are capable of provid-
ing increased safety levels, as well as higher theoretical
energy densities [10].

One of the promising materials and relatively mature tech-
nology that has been in constant development and research in
the last 20 years is magnesium (Mg)-based batteries [8,
11–14]. Besides being a multivalent anode, metallic Mg pre-
sents further significant characteristics. Low cost (its elemen-
tal abundance on the Earth’s crust is significantly more than Li
[13]), low negative potential, higher safety, and high theoret-
ical volumetric and gravimetric storage capacities
(3.83 Ah cm−3 and 2.2 Ah g−1, respectively [8]) are only part
of the advantages offered by the Mg anode. After the promis-
ing proof of concept achieved back in 2000, using Chevrel
phases, many companies were interested in developing the
technology and in the use of it for numerous applications
[15]. On the other hand, various studies and reviews published
lately have presented several barriers that seem to be challeng-
ing to overcome and hinder the commercialization of the Mg-
ion battery technology [8, 14, 16].

The chemistry standing behind the use of a multivalent
material, in opposition to Li and sodium (Na), induce certain
issues related to electrolyte limitations and shortage in effi-
cient cathode materials. Most of the challenges in the Mg-
ion batteries arise from the high polarization ability of the
divalent cations [8, 11, 13, 14, 17]. The higher charge density
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of Mg2+ ions, in comparison with Li+, leads to much stronger
coulombic interactions with its surroundings, including the
electrolyte and the active cathode material. Therefore, diffi-
culties in reversible insertion and extraction of the divalent
cation from the hosting material result in a sluggish migration
and high-energy barriers. Financial efforts were also invested
in plans that aim to overcome those difficulties. For example,
E-MAGIC (FET-Open, European Magnesium Interactive
Battery Community), a 4-year proactive project (with the
Technion as one of the consortia members), was founded to
demonstrate an innovative Mg-based energy storage
technology.

Interestingly, even higher valent metal that has gained in-
creasing attention in the last decade is aluminum (Al). Al
seems like a promising technology as it is the most abundant
metal on planet Earth and therefore presenting an affordable
price along with high volumetric capacity in comparison with
that of Li (8.05 in comparison with 2.04 Ah cm−3), which are
two primary considerations, particularly for portable applica-
tions [10, 11, 18]. Even more importantly, the extensive use of
Al over the years for various applications has led to the devel-
opment of a well-known and a cost-efficient recycling pro-
cess, which is another major challenge existing for the Li-
ion battery technology [19, 20]. But is it enough? With all
the advantages listed (safety, recycling processes, and cost-
effective prices) and holding the impressive feature of 4 times
more energy per volume (compared with metallic Li), the
development challenges associated with this technology are
yet far from being resolved [21].

Although the number of research publications presenting
innovative rechargeable Al-ion energy systems has increased
dramatically in recent years, still plenty of uncertainty is pres-
ent, and quite a large number of misconceptions are being
delivered. Al-based systems can be separated into three main
categories, including Al-air, Al-ion, chloroaluminate anion bat-
teries [10], and a few additional systems such as Al-sulfur [22,
23] and Al-iodine [24, 25]. Primary Al-air batteries, which
utilize Al metal against a porous carbon-based electrode that
allows O2 penetration, were studied using aqueous [26], non-
aqueous [27], and ionic liquid–based electrolytes [28–31]. The
pristine oxide layer of the Al metal alongside the parasitic re-
actions resulting from the direct interaction with the electrolyte
media is a minor concern in comparison with the non-
rechargeability obstacle that remains a challenge [18, 32].

Al-ion batteries can be described as batteries where Al3+ is
the intercalating ion. This condition, alongside the facile de-
position and dissolution of Al metal, is a key factor to reach
the promising energy densities associated with the use of Al as
the negative electrode [33]. Although various cathode mate-
rials were suggested and presented as possible hosts for Al3+,
still the discussions and demonstrated results dealing with

most of them lack the actual and correct mechanisms leading
to the electrochemical activity exhibited (see Table 1). Mo6S8,
the Chevrel phase that was previously presented as a
promising hosting material for Mg2+ ions, is one of
the only compositions that were proven to be capable
of hosting Al3+ ions both experimentally [34, 47] and
theoretically, using bond valence energy landscape
(BVEL) algorithm [21]. Recent calculations alongside
experimental publications suggested a successful utiliza-
tion of the α-MoO3 phase, as well [21, 35].

As presented in Table 1, most of the active cathode mate-
r ia ls published al low revers ible intercalat ion of
chloroaluminate anions. Graphite and innovative carbon-
based cathodes are the most studied and promising materials
to serve in the Al-based energy storage systems. Theoretical
calculations have shown no possible intercalation of the Al3+

ions, and the experimental publications struggle to prove it, as
well [41–45, 51]. Several other known and less explored ma-
terials that were tested as possible cathodic materials present-
ed an electrochemical performance that can be explained by
either intercalation of solvated anions or later exposed side
effects (see Table 1).

In summary, many efforts, both academic and finan-
cial (such as the ALION project [10]), are invested in
the attractive Al-based energy storage technologies. The
growing attention gave rise to an enormous amount of
studies that claim to present promising innovative Al-
ion hosting materials. Some of the research being pub-
lished are of a poor scientific level, although being
published in highly rated journals. Most of the publica-
tions reviewed here still fail to fully explain the electro-
chemical processes taking place throughout the cell’s
functioning. Moreover, a reasonable and adequate cy-
cling capability, together with the promising theoretical
storage capacities presented for the reversible Al3+ ion
intercalation and metallic Al deposition processes, is yet
far from being achieved. Clear differentiation between
the various technologies, along with preliminary theoret-
ical works, can hopefully lead to much focused and
fruitful research. Experimental work involving a variety
of characterization methods is mandatory to deeply un-
derstand and investigate the specific mechanism relevant
to the electrochemical system.

It is our duty, as a responsible and matured research com-
munity, to be alert to the desire of some researchers to prompt-
ly publish results in high-impact journals, even in the cost of
crossing a “red-line” of ethics and the essential need to verify
the obtained results. We also must be on guard and take re-
sponsibility by accepting reviewing tasks and being alert for
detecting flaws and incorrect data included in some of the
manuscripts.
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